ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.02590
  4. Cited By
Optimizing Millions of Hyperparameters by Implicit Differentiation

Optimizing Millions of Hyperparameters by Implicit Differentiation

6 November 2019
Jonathan Lorraine
Paul Vicol
David Duvenaud
    DD
ArXivPDFHTML

Papers citing "Optimizing Millions of Hyperparameters by Implicit Differentiation"

50 / 271 papers shown
Title
Value Function Based Difference-of-Convex Algorithm for Bilevel
  Hyperparameter Selection Problems
Value Function Based Difference-of-Convex Algorithm for Bilevel Hyperparameter Selection Problems
Lucy L. Gao
J. Ye
Haian Yin
Shangzhi Zeng
Jin Zhang
32
24
0
13 Jun 2022
Dataset Distillation using Neural Feature Regression
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
55
151
0
01 Jun 2022
On the complexity of nonsmooth automatic differentiation
On the complexity of nonsmooth automatic differentiation
Jérôme Bolte
Ryan Boustany
Edouard Pauwels
B. Pesquet-Popescu
18
2
0
01 Jun 2022
Automatic differentiation of nonsmooth iterative algorithms
Automatic differentiation of nonsmooth iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
23
22
0
31 May 2022
Self-Guided Noise-Free Data Generation for Efficient Zero-Shot Learning
Self-Guided Noise-Free Data Generation for Efficient Zero-Shot Learning
Jiahui Gao
Renjie Pi
Yong Lin
Hang Xu
Jiacheng Ye
Zhiyong Wu
Weizhong Zhang
Xiaodan Liang
Zhenguo Li
Lingpeng Kong
SyDa
VLM
75
45
0
25 May 2022
Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
  and Application
Revisiting GANs by Best-Response Constraint: Perspective, Methodology, and Application
Risheng Liu
Jiaxin Gao
Xuan Liu
Xin-Yue Fan
37
4
0
20 May 2022
Towards Extremely Fast Bilevel Optimization with Self-governed
  Convergence Guarantees
Towards Extremely Fast Bilevel Optimization with Self-governed Convergence Guarantees
Risheng Liu
Xuan Liu
Wei-Ting Yao
Shangzhi Zeng
Jin Zhang
28
3
0
20 May 2022
Set-based Meta-Interpolation for Few-Task Meta-Learning
Set-based Meta-Interpolation for Few-Task Meta-Learning
Seanie Lee
Bruno Andreis
Kenji Kawaguchi
Juho Lee
Sung Ju Hwang
43
9
0
20 May 2022
Beyond backpropagation: bilevel optimization through implicit
  differentiation and equilibrium propagation
Beyond backpropagation: bilevel optimization through implicit differentiation and equilibrium propagation
Nicolas Zucchet
João Sacramento
36
15
0
06 May 2022
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular
  Property Prediction
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction
Wenlin Chen
Austin Tripp
José Miguel Hernández-Lobato
22
23
0
05 May 2022
Model-Based Deep Learning: On the Intersection of Deep Learning and
  Optimization
Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization
Nir Shlezinger
Yonina C. Eldar
Stephen P. Boyd
30
130
0
05 May 2022
Second-Order Sensitivity Analysis for Bilevel Optimization
Second-Order Sensitivity Analysis for Bilevel Optimization
Robert Dyro
Edward Schmerling
Nikos Arechiga
Marco Pavone
35
3
0
04 May 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
44
73
0
04 May 2022
Wild Patterns Reloaded: A Survey of Machine Learning Security against
  Training Data Poisoning
Wild Patterns Reloaded: A Survey of Machine Learning Security against Training Data Poisoning
Antonio Emanuele Cinà
Kathrin Grosse
Ambra Demontis
Sebastiano Vascon
Werner Zellinger
Bernhard A. Moser
Alina Oprea
Battista Biggio
Marcello Pelillo
Fabio Roli
AAML
25
119
0
04 May 2022
Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding
Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding
Xian Shi
Xun Xu
Wanyue Zhang
Xiatian Zhu
Chuan-Sheng Foo
Kui Jia
3DPC
33
5
0
02 May 2022
Machines of finite depth: towards a formalization of neural networks
Machines of finite depth: towards a formalization of neural networks
Pietro Vertechi
M. Bergomi
PINN
24
2
0
27 Apr 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
29
33
0
14 Apr 2022
Data Augmentation for Electrocardiograms
Data Augmentation for Electrocardiograms
Aniruddh Raghu
Divya Shanmugam
E. Pomerantsev
John Guttag
Collin M. Stultz
23
18
0
09 Apr 2022
Equivariance Discovery by Learned Parameter-Sharing
Equivariance Discovery by Learned Parameter-Sharing
Raymond A. Yeh
Yuan-Ting Hu
M. Hasegawa-Johnson
Alex Schwing
FedML
37
15
0
07 Apr 2022
A Fast and Convergent Proximal Algorithm for Regularized Nonconvex and
  Nonsmooth Bi-level Optimization
A Fast and Convergent Proximal Algorithm for Regularized Nonconvex and Nonsmooth Bi-level Optimization
Ziyi Chen
B. Kailkhura
Yi Zhou
26
8
0
30 Mar 2022
Predicting Multi-Antenna Frequency-Selective Channels via Meta-Learned
  Linear Filters based on Long-Short Term Channel Decomposition
Predicting Multi-Antenna Frequency-Selective Channels via Meta-Learned Linear Filters based on Long-Short Term Channel Decomposition
Sangwoo Park
Osvaldo Simeone
39
4
0
23 Mar 2022
Learning to Generate Synthetic Training Data using Gradient Matching and
  Implicit Differentiation
Learning to Generate Synthetic Training Data using Gradient Matching and Implicit Differentiation
Dmitry Medvedev
A. Dýakonov
DD
16
9
0
16 Mar 2022
Training Protocol Matters: Towards Accurate Scene Text Recognition via
  Training Protocol Searching
Training Protocol Matters: Towards Accurate Scene Text Recognition via Training Protocol Searching
Xiaojie Chu
Yongtao Wang
Chunhua Shen
Jingdong Chen
Wei Chu
24
0
0
13 Mar 2022
A Primal-Dual Approach to Bilevel Optimization with Multiple Inner
  Minima
A Primal-Dual Approach to Bilevel Optimization with Multiple Inner Minima
Daouda Sow
Kaiyi Ji
Ziwei Guan
Yingbin Liang
32
9
0
01 Mar 2022
Amortized Proximal Optimization
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
29
14
0
28 Feb 2022
Learning Invariant Weights in Neural Networks
Learning Invariant Weights in Neural Networks
Tycho F. A. van der Ouderaa
Mark van der Wilk
29
21
0
25 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
41
44
0
22 Feb 2022
Supervising the Multi-Fidelity Race of Hyperparameter Configurations
Supervising the Multi-Fidelity Race of Hyperparameter Configurations
Martin Wistuba
Arlind Kadra
Josif Grabocka
36
14
0
20 Feb 2022
ACORT: A Compact Object Relation Transformer for Parameter Efficient
  Image Captioning
ACORT: A Compact Object Relation Transformer for Parameter Efficient Image Captioning
J. Tan
Y. Tan
C. Chan
Joon Huang Chuah
VLM
ViT
31
15
0
11 Feb 2022
Trust in AI: Interpretability is not necessary or sufficient, while
  black-box interaction is necessary and sufficient
Trust in AI: Interpretability is not necessary or sufficient, while black-box interaction is necessary and sufficient
Max W. Shen
27
18
0
10 Feb 2022
Bilevel Optimization with a Lower-level Contraction: Optimal Sample
  Complexity without Warm-start
Bilevel Optimization with a Lower-level Contraction: Optimal Sample Complexity without Warm-start
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
28
12
0
07 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
78
43
0
01 Feb 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
24
12
0
17 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Efficient Automatic Differentiation of Implicit Functions
Efficient Automatic Differentiation of Implicit Functions
C. Margossian
M. Betancourt
30
2
0
28 Dec 2021
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
68
0
27 Dec 2021
Lyapunov Exponents for Diversity in Differentiable Games
Lyapunov Exponents for Diversity in Differentiable Games
Jonathan Lorraine
Paul Vicol
Jack Parker-Holder
Tal Kachman
Luke Metz
Jakob N. Foerster
35
7
0
24 Dec 2021
DARTS without a Validation Set: Optimizing the Marginal Likelihood
DARTS without a Validation Set: Optimizing the Marginal Likelihood
M. Fil
Binxin Ru
Clare Lyle
Y. Gal
29
2
0
24 Dec 2021
Adaptive Incentive Design with Multi-Agent Meta-Gradient Reinforcement
  Learning
Adaptive Incentive Design with Multi-Agent Meta-Gradient Reinforcement Learning
Jiachen Yang
Ethan Wang
Rakshit S. Trivedi
T. Zhao
H. Zha
32
20
0
20 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
31
26
0
16 Dec 2021
Noether Networks: Meta-Learning Useful Conserved Quantities
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
75
27
0
06 Dec 2021
Amortized Implicit Differentiation for Stochastic Bilevel Optimization
Amortized Implicit Differentiation for Stochastic Bilevel Optimization
Michael Arbel
Julien Mairal
105
58
0
29 Nov 2021
Learning Augmentation Distributions using Transformed Risk Minimization
Learning Augmentation Distributions using Transformed Risk Minimization
Evangelos Chatzipantazis
Stefanos Pertigkiozoglou
Kostas Daniilidis
Yan Sun
51
15
0
16 Nov 2021
On Training Implicit Models
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
72
69
0
09 Nov 2021
Meta-Learning to Improve Pre-Training
Meta-Learning to Improve Pre-Training
Aniruddh Raghu
Jonathan Lorraine
Simon Kornblith
Matthew B. A. McDermott
David Duvenaud
27
30
0
02 Nov 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
31
9
0
20 Oct 2021
On the Convergence Theory for Hessian-Free Bilevel Algorithms
On the Convergence Theory for Hessian-Free Bilevel Algorithms
Daouda Sow
Kaiyi Ji
Yingbin Liang
28
28
0
13 Oct 2021
Value-Function-based Sequential Minimization for Bi-level Optimization
Value-Function-based Sequential Minimization for Bi-level Optimization
Risheng Liu
Xuan Liu
Shangzhi Zeng
Jin Zhang
Yixuan Zhang
40
30
0
11 Oct 2021
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Haebeom Lee
Hayeon Lee
Jaewoong Shin
Eunho Yang
Timothy M. Hospedales
Sung Ju Hwang
DD
42
2
0
06 Oct 2021
Inexact bilevel stochastic gradient methods for constrained and
  unconstrained lower-level problems
Inexact bilevel stochastic gradient methods for constrained and unconstrained lower-level problems
Tommaso Giovannelli
G. Kent
Luis Nunes Vicente
33
12
0
01 Oct 2021
Previous
123456
Next