ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.02088
  4. Cited By
An Alternative Probabilistic Interpretation of the Huber Loss

An Alternative Probabilistic Interpretation of the Huber Loss

5 November 2019
Gregory P. Meyer
ArXivPDFHTML

Papers citing "An Alternative Probabilistic Interpretation of the Huber Loss"

12 / 12 papers shown
Title
TimeCapsule: Solving the Jigsaw Puzzle of Long-Term Time Series Forecasting with Compressed Predictive Representations
TimeCapsule: Solving the Jigsaw Puzzle of Long-Term Time Series Forecasting with Compressed Predictive Representations
Yihang Lu
Yangyang Xu
Qitao Qing
Xianwei Meng
AI4TS
49
0
0
17 Apr 2025
Sparse Bayesian Lasso via a Variable-Coefficient $\ell_1$ Penalty
Sparse Bayesian Lasso via a Variable-Coefficient ℓ1\ell_1ℓ1​ Penalty
Nathan Wycoff
Ali Arab
Katharine M. Donato
Lisa O. Singh
26
3
0
09 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
Exponential Family Trend Filtering on Lattices
Exponential Family Trend Filtering on Lattices
Veeranjaneyulu Sadhanala
R. Bassett
James Sharpnack
D. McDonald
37
3
0
19 Sep 2022
A novel Deep Learning approach for one-step Conformal Prediction
  approximation
A novel Deep Learning approach for one-step Conformal Prediction approximation
Julia A. Meister
K. Nguyen
S. Kapetanakis
Zhiyuan Luo
18
5
0
25 Jul 2022
Variational Sparse Coding with Learned Thresholding
Variational Sparse Coding with Learned Thresholding
Kion Fallah
Christopher Rozell
DRL
25
7
0
07 May 2022
Markov subsampling based Huber Criterion
Markov subsampling based Huber Criterion
Tieliang Gong
Yuxin Dong
Hong Chen
B. Dong
Chen Li
21
2
0
12 Dec 2021
CIRA Guide to Custom Loss Functions for Neural Networks in Environmental
  Sciences -- Version 1
CIRA Guide to Custom Loss Functions for Neural Networks in Environmental Sciences -- Version 1
I. Ebert‐Uphoff
Ryan Lagerquist
Kyle Hilburn
Yoonjin Lee
Katherine Haynes
Jason Stock
C. Kumler
J. Stewart
24
20
0
17 Jun 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
35
2
0
04 Jan 2021
Iteratively Reweighted Least Squares for Basis Pursuit with Global
  Linear Convergence Rate
Iteratively Reweighted Least Squares for Basis Pursuit with Global Linear Convergence Rate
C. Kümmerle
C. M. Verdun
Dominik Stöger
28
14
0
22 Dec 2020
Inferring Spatial Uncertainty in Object Detection
Inferring Spatial Uncertainty in Object Detection
Zining Wang
Di Feng
Yiyang Zhou
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
Masayoshi Tomizuka
Wei Zhan
16
27
0
07 Mar 2020
Learning an Uncertainty-Aware Object Detector for Autonomous Driving
Learning an Uncertainty-Aware Object Detector for Autonomous Driving
Gregory P. Meyer
Niranjan Thakurdesai
UQCV
25
60
0
24 Oct 2019
1