ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.01429
  4. Cited By
The frontier of simulation-based inference
v1v2v3 (latest)

The frontier of simulation-based inference

4 November 2019
Kyle Cranmer
Johann Brehmer
Gilles Louppe
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "The frontier of simulation-based inference"

37 / 337 papers shown
Title
Hierarchical clustering in particle physics through reinforcement
  learning
Hierarchical clustering in particle physics through reinforcement learning
Johann Brehmer
S. Macaluso
D. Pappadopulo
Kyle Cranmer
26
6
0
16 Nov 2020
Solving high-dimensional parameter inference: marginal posterior
  densities & Moment Networks
Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks
N. Jeffrey
Benjamin Dan Wandelt
70
39
0
11 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
72
28
0
11 Nov 2020
Lightning-Fast Gravitational Wave Parameter Inference through Neural
  Amortization
Lightning-Fast Gravitational Wave Parameter Inference through Neural Amortization
Arnaud Delaunoy
Antoine Wehenkel
T. Hinderer
S. Nissanke
Christoph Weniger
A. Williamson
Gilles Louppe
94
30
0
24 Oct 2020
ABC-Di: Approximate Bayesian Computation for Discrete Data
ABC-Di: Approximate Bayesian Computation for Discrete Data
I. Auzina
Jakub M. Tomczak
29
0
0
19 Oct 2020
Error-guided likelihood-free MCMC
Error-guided likelihood-free MCMC
Volodimir Begy
Erich Schikuta
63
3
0
13 Oct 2020
Simulation-based inference methods for particle physics
Simulation-based inference methods for particle physics
Johann Brehmer
Kyle Cranmer
AI4CE
126
22
0
13 Oct 2020
Real-time parameter inference in reduced-order flame models with
  heteroscedastic Bayesian neural network ensembles
Real-time parameter inference in reduced-order flame models with heteroscedastic Bayesian neural network ensembles
Ushnish Sengupta
Maximilian L. Croci
M. Juniper
12
3
0
11 Oct 2020
Automating Inference of Binary Microlensing Events with Neural Density
  Estimation
Automating Inference of Binary Microlensing Events with Neural Density Estimation
Keming 名 Zhang 张 可
J. Bloom
B. Gaudi
F. Lanusse
C. Lam
Jessica R. Lu
21
1
0
08 Oct 2020
OutbreakFlow: Model-based Bayesian inference of disease outbreak
  dynamics with invertible neural networks and its application to the COVID-19
  pandemics in Germany
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany
Stefan T. Radev
Frederik Graw
Simiao Chen
N. Mutters
V. Eichel
T. Bärnighausen
Ullrich Kothe
77
32
0
01 Oct 2020
Population-based Optimization for Kinetic Parameter Identification in
  Glycolytic Pathway in Saccharomyces cerevisiae
Population-based Optimization for Kinetic Parameter Identification in Glycolytic Pathway in Saccharomyces cerevisiae
Ewelina Węglarz-Tomczak
Jakub M. Tomczak
A. E. Eiben
S. Brul
14
0
0
19 Sep 2020
Novel and flexible parameter estimation methods for data-consistent
  inversion in mechanistic modeling
Novel and flexible parameter estimation methods for data-consistent inversion in mechanistic modeling
Timothy Rumbell
Jaimit Parikh
J. Kozloski
V. Gurev
48
6
0
17 Sep 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDLMedIm
79
9
0
16 Sep 2020
Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data
  Generation
Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data Generation
Jeevan Devaranjan
Amlan Kar
Sanja Fidler
76
89
0
20 Aug 2020
Learning Insulin-Glucose Dynamics in the Wild
Learning Insulin-Glucose Dynamics in the Wild
Andrew C. Miller
N. Foti
E. Fox
AI4TS
35
20
0
06 Aug 2020
Dealing with Nuisance Parameters using Machine Learning in High Energy
  Physics: a Review
Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review
T. Dorigo
P. D. Castro
57
14
0
17 Jul 2020
Variational Autoencoding of PDE Inverse Problems
Variational Autoencoding of PDE Inverse Problems
Daniel J. Tait
Theodoros Damoulas
AI4CE
49
12
0
28 Jun 2020
Technology Readiness Levels for AI & ML
Technology Readiness Levels for AI & ML
Alexander Lavin
Ajay Sharma
VLM
111
110
0
21 Jun 2020
Conditional Sampling with Monotone GANs: from Generative Models to
  Likelihood-Free Inference
Conditional Sampling with Monotone GANs: from Generative Models to Likelihood-Free Inference
Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef Marzouk
OTGAN
98
24
0
11 Jun 2020
Simulation-Based Inference for Global Health Decisions
Simulation-Based Inference for Global Health Decisions
Christian Schroeder de Witt
Bradley Gram-Hansen
Nantas Nardelli
Andrew Gambardella
R. Zinkov
...
N. Siddharth
A. B. Espinosa-González
A. Darzi
Philip Torr
A. G. Baydin
AI4CE
61
5
0
14 May 2020
Amortized Bayesian Inference for Models of Cognition
Amortized Bayesian Inference for Models of Cognition
Stefan T. Radev
A. Voss
Eva Marie Wieschen
Paul-Christian Bürkner
63
5
0
08 May 2020
Amortized Bayesian model comparison with evidential deep learning
Amortized Bayesian model comparison with evidential deep learning
Stefan T. Radev
Marco D’Alessandro
U. Mertens
A. Voss
Ullrich Kothe
Paul-Christian Bürkner
BDL
85
34
0
22 Apr 2020
Flows for simultaneous manifold learning and density estimation
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRLAI4CE
108
163
0
31 Mar 2020
Optimal statistical inference in the presence of systematic
  uncertainties using neural network optimization based on binned Poisson
  likelihoods with nuisance parameters
Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters
Stefan Wunsch
Simon Jörger
R. Wolf
G. Quast
65
20
0
16 Mar 2020
BayesFlow: Learning complex stochastic models with invertible neural
  networks
BayesFlow: Learning complex stochastic models with invertible neural networks
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
312
197
0
13 Mar 2020
Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference
  Setting
Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting
Niccolò Dalmasso
Rafael Izbicki
Ann B. Lee
66
21
0
24 Feb 2020
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free'
  Dynamical Systems
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
70
21
0
21 Feb 2020
Black-Box Optimization with Local Generative Surrogates
Black-Box Optimization with Local Generative Surrogates
S. Shirobokov
V. Belavin
Michael Kagan
Andrey Ustyuzhanin
A. G. Baydin
40
3
0
11 Feb 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
233
123
0
10 Feb 2020
Differential Evolution with Reversible Linear Transformations
Differential Evolution with Reversible Linear Transformations
Jakub M. Tomczak
Ewelina Węglarz-Tomczak
A. E. Eiben
67
19
0
07 Feb 2020
Convolutional Neural Networks as Summary Statistics for Approximate
  Bayesian Computation
Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation
Mattias Åkesson
Prashant Singh
Fredrik Wrede
Andreas Hellander
BDL
107
33
0
31 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
217
1,719
0
05 Dec 2019
BADGER: Learning to (Learn [Learning Algorithms] through Multi-Agent
  Communication)
BADGER: Learning to (Learn [Learning Algorithms] through Multi-Agent Communication)
Marek Rosa
O. Afanasjeva
Simon Andersson
Joseph Davidson
N. Guttenberg
Petr Hlubucek
Martin Poliak
Jaroslav Vítků
Jan Feyereisl
72
10
0
03 Dec 2019
Coupling techniques for nonlinear ensemble filtering
Coupling techniques for nonlinear ensemble filtering
Alessio Spantini
Ricardo Baptista
Youssef Marzouk
115
76
0
30 Jun 2019
Stratified sampling and bootstrapping for approximate Bayesian
  computation
Stratified sampling and bootstrapping for approximate Bayesian computation
Umberto Picchini
R. Everitt
58
1
0
20 May 2019
Robust Approximate Bayesian Inference with Synthetic Likelihood
Robust Approximate Bayesian Inference with Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
70
45
0
09 Apr 2019
Constraining Effective Field Theories with Machine Learning
Constraining Effective Field Theories with Machine Learning
Johann Brehmer
Kyle Cranmer
Gilles Louppe
J. Pavez
AI4CE
129
152
0
30 Apr 2018
Previous
1234567