ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.01429
  4. Cited By
The frontier of simulation-based inference
v1v2v3 (latest)

The frontier of simulation-based inference

4 November 2019
Kyle Cranmer
Johann Brehmer
Gilles Louppe
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "The frontier of simulation-based inference"

50 / 337 papers shown
Title
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
Arthur Gretton
F. Briol
T. Fernandez
122
16
0
19 Nov 2021
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal
  Neural Ratio Estimation
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation
A. Cole
Benjamin Kurt Miller
S. Witte
Maxwell X. Cai
M. Grootes
F. Nattino
Christoph Weniger
69
40
0
15 Nov 2021
Inverting brain grey matter models with likelihood-free inference: a
  tool for trustable cytoarchitecture measurements
Inverting brain grey matter models with likelihood-free inference: a tool for trustable cytoarchitecture measurements
Maëliss Jallais
Pedro L. C. Rodrigues
Alexandre Gramfort
Demian Wassermann
103
11
0
15 Nov 2021
A research framework for writing differentiable PDE discretizations in
  JAX
A research framework for writing differentiable PDE discretizations in JAX
A. Stanziola
Simon Arridge
B. Cox
B. Treeby
54
8
0
09 Nov 2021
Data-Centric Engineering: integrating simulation, machine learning and
  statistics. Challenges and Opportunities
Data-Centric Engineering: integrating simulation, machine learning and statistics. Challenges and Opportunities
Indranil Pan
L. Mason
Omar K. Matar
AI4CE
102
46
0
07 Nov 2021
Implicit Deep Adaptive Design: Policy-Based Experimental Design without
  Likelihoods
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
132
48
0
03 Nov 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
58
1
0
02 Nov 2021
Robot Learning from Randomized Simulations: A Review
Robot Learning from Randomized Simulations: A Review
Fabio Muratore
Fabio Ramos
Greg Turk
Wenhao Yu
Michael Gienger
Jan Peters
AI4CE
119
82
0
01 Nov 2021
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian
  parameter inference for partially observed stochastic processes
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
58
16
0
26 Oct 2021
A neural simulation-based inference approach for characterizing the
  Galactic Center $γ$-ray excess
A neural simulation-based inference approach for characterizing the Galactic Center γγγ-ray excess
S. Mishra-Sharma
Kyle Cranmer
126
28
0
13 Oct 2021
A Trust Crisis In Simulation-Based Inference? Your Posterior
  Approximations Can Be Unfaithful
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans
Arnaud Delaunoy
François Rozet
Antoine Wehenkel
Volodimir Begy
Gilles Louppe
118
42
0
13 Oct 2021
Detecting and Quantifying Malicious Activity with Simulation-based
  Inference
Detecting and Quantifying Malicious Activity with Simulation-based Inference
Andrew Gambardella
Bogdan State
Naemullah Khan
Leo Tsourides
Philip Torr
A. G. Baydin
49
2
0
06 Oct 2021
Inferring dark matter substructure with astrometric lensing beyond the
  power spectrum
Inferring dark matter substructure with astrometric lensing beyond the power spectrum
S. Mishra-Sharma
101
11
0
04 Oct 2021
Arbitrary Marginal Neural Ratio Estimation for Simulation-based
  Inference
Arbitrary Marginal Neural Ratio Estimation for Simulation-based Inference
François Rozet
Gilles Louppe
90
6
0
01 Oct 2021
Simulation-based Bayesian inference for multi-fingered robotic grasping
Simulation-based Bayesian inference for multi-fingered robotic grasping
Norman Marlier
O. Bruls
Gilles Louppe
89
6
0
29 Sep 2021
Probabilistic Inference of Simulation Parameters via Parallel
  Differentiable Simulation
Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation
Eric Heiden
Chris Denniston
David Millard
Fabio Ramos
Gaurav Sukhatme
85
22
0
18 Sep 2021
Identification of Vehicle Dynamics Parameters Using Simulation-based
  Inference
Identification of Vehicle Dynamics Parameters Using Simulation-based Inference
Ali Boyali
S. Thompson
D. Wong
107
6
0
27 Aug 2021
Neural Networks for Parameter Estimation in Intractable Models
Neural Networks for Parameter Estimation in Intractable Models
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
394
54
0
29 Jul 2021
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and
  Machine Learning for Reliable Simulator-Based Inference
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
Niccolò Dalmasso
Luca Masserano
David Y. Zhao
Rafael Izbicki
Ann B. Lee
150
7
0
08 Jul 2021
Truncated Marginal Neural Ratio Estimation
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
135
38
0
02 Jul 2021
Efficient State-space Exploration in Massively Parallel Simulation Based
  Inference
Efficient State-space Exploration in Massively Parallel Simulation Based Inference
S. Kulkarni
C. A. Moritz
22
0
0
29 Jun 2021
Real-time gravitational-wave science with neural posterior estimation
Real-time gravitational-wave science with neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
83
135
0
23 Jun 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
62
2
0
23 Jun 2021
Discrepancy-based Inference for Intractable Generative Models using
  Quasi-Monte Carlo
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
104
13
0
22 Jun 2021
Particle Cloud Generation with Message Passing Generative Adversarial
  Networks
Particle Cloud Generation with Message Passing Generative Adversarial Networks
Raghav Kansal
Javier Mauricio Duarte
Haoran Su
B. Orzari
T. Tomei
M. Pierini
M. Touranakou
J. Vlimant
Dimitrios Gunopulos
98
75
0
22 Jun 2021
Fitting summary statistics of neural data with a differentiable spiking
  network simulator
Fitting summary statistics of neural data with a differentiable spiking network simulator
G. Bellec
Shuqi Wang
Alireza Modirshanechi
Johanni Brea
W. Gerstner
66
11
0
18 Jun 2021
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
  Inference from Sampled Trajectories
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood Inference from Sampled Trajectories
G. Isacchini
Natanael Spisak
Armita Nourmohammad
T. Mora
A. Walczak
68
0
0
03 Jun 2021
Calibrating Over-Parametrized Simulation Models: A Framework via
  Eligibility Set
Calibrating Over-Parametrized Simulation Models: A Framework via Eligibility Set
Yuanlu Bai
T. Balch
Haoxian Chen
Danial Dervovic
Henry Lam
Svitlana Vyetrenko
116
2
0
27 May 2021
DiSECt: A Differentiable Simulation Engine for Autonomous Robotic
  Cutting
DiSECt: A Differentiable Simulation Engine for Autonomous Robotic Cutting
Eric Heiden
Miles Macklin
Yashraj S. Narang
Dieter Fox
Animesh Garg
Fabio Ramos
65
96
0
25 May 2021
Gradient-based Bayesian Experimental Design for Implicit Models using
  Mutual Information Lower Bounds
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds
Steven Kleinegesse
Michael U. Gutmann
FedML
71
25
0
10 May 2021
Segmenting Hybrid Trajectories using Latent ODEs
Segmenting Hybrid Trajectories using Latent ODEs
Ruian Shi
Q. Morris
BDL
50
6
0
09 May 2021
Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
  Model of COVID-19 Hospital Trajectories
Approximate Bayesian Computation for an Explicit-Duration Hidden Markov Model of COVID-19 Hospital Trajectories
Gian Marco Visani
A. Lee
C. Nguyen
David M Kent
J. Wong
Joshua T. Cohen
M. C. Hughes
OOD
39
1
0
28 Apr 2021
Approximate Bayesian inference from noisy likelihoods with Gaussian
  process emulated MCMC
Approximate Bayesian inference from noisy likelihoods with Gaussian process emulated MCMC
Marko Jarvenpaa
J. Corander
54
5
0
08 Apr 2021
gradSim: Differentiable simulation for system identification and
  visuomotor control
gradSim: Differentiable simulation for system identification and visuomotor control
Krishna Murthy Jatavallabhula
Miles Macklin
Florian Golemo
Vikram S. Voleti
Petrini
...
Erleben
Liam Paull
Florian Shkurti
Derek Nowrouzezahrai
Sanja Fidler
54
104
0
06 Apr 2021
Learning physical properties of anomalous random walks using graph
  neural networks
Learning physical properties of anomalous random walks using graph neural networks
Hippolyte Verdier
M. Duval
François Laurent
Alhassan Cassé
Christian L. Vestergaard
Jean-Baptiste Masson
71
25
0
22 Mar 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable
  Generative Modeling
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRLAI4CE
96
56
0
25 Feb 2021
Neural Posterior Regularization for Likelihood-Free Inference
Neural Posterior Regularization for Likelihood-Free Inference
Dongjun Kim
Kyungwoo Song
Seung-Jae Shin
Wanmo Kang
Il-Chul Moon
Weonyoung Joo
54
1
0
15 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
446
33
0
12 Feb 2021
Robust and integrative Bayesian neural networks for likelihood-free
  parameter inference
Robust and integrative Bayesian neural networks for likelihood-free parameter inference
Fredrik Wrede
Robin Eriksson
Richard M. Jiang
Linda R. Petzold
Stefan Engblom
Andreas Hellander
Prashant Singh
115
7
0
12 Feb 2021
HNPE: Leveraging Global Parameters for Neural Posterior Estimation
HNPE: Leveraging Global Parameters for Neural Posterior Estimation
Pedro L. C. Rodrigues
Thomas Moreau
Gilles Louppe
Alexandre Gramfort
175
13
0
12 Feb 2021
Real-Time Likelihood-Free Inference of Roman Binary Microlensing Events
  with Amortized Neural Posterior Estimation
Real-Time Likelihood-Free Inference of Roman Binary Microlensing Events with Amortized Neural Posterior Estimation
Keming 名 Zhang 张 可
J. Bloom
B. Gaudi
F. Lanusse
C. Lam
Jessica R. Lu
41
28
0
10 Feb 2021
Variational Inference for Deblending Crowded Starfields
Variational Inference for Deblending Crowded Starfields
Runjing Liu
Jon D. McAuliffe
Jeffrey Regier
BDL
61
10
0
04 Feb 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELMAI4CE
89
182
0
02 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
265
198
0
12 Jan 2021
Parameter Estimation with Dense and Convolutional Neural Networks
  Applied to the FitzHugh-Nagumo ODE
Parameter Estimation with Dense and Convolutional Neural Networks Applied to the FitzHugh-Nagumo ODE
J. Rudi
J. Bessac
Amanda Lenzi
333
33
0
12 Dec 2020
Learning summary features of time series for likelihood free inference
Learning summary features of time series for likelihood free inference
Pedro L. C. Rodrigues
Alexandre Gramfort
AI4TS
56
4
0
04 Dec 2020
IV-Posterior: Inverse Value Estimation for Interpretable Policy
  Certificates
IV-Posterior: Inverse Value Estimation for Interpretable Policy Certificates
Tatiana Lopez-Guevara
Michael G. Burke
Nick K. Taylor
Kartic Subr
OffRL
48
0
0
30 Nov 2020
Towards constraining warm dark matter with stellar streams through
  neural simulation-based inference
Towards constraining warm dark matter with stellar streams through neural simulation-based inference
Joeri Hermans
N. Banik
Christoph Weniger
G. Bertone
Gilles Louppe
80
29
0
30 Nov 2020
Simulation-efficient marginal posterior estimation with swyft: stop
  wasting your precious time
Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time
Benjamin Kurt Miller
A. Cole
Gilles Louppe
Christoph Weniger
58
19
0
27 Nov 2020
Generalized Posteriors in Approximate Bayesian Computation
Generalized Posteriors in Approximate Bayesian Computation
Sebastian M. Schmon
Patrick W Cannon
Jeremias Knoblauch
105
25
0
17 Nov 2020
Previous
1234567
Next