ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.13719
  4. Cited By
RandAugment: Practical automated data augmentation with a reduced search
  space

RandAugment: Practical automated data augmentation with a reduced search space

30 September 2019
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
    MQ
ArXivPDFHTML

Papers citing "RandAugment: Practical automated data augmentation with a reduced search space"

50 / 2,006 papers shown
Title
Taxonomy of Machine Learning Safety: A Survey and Primer
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
26
31
0
09 Jun 2021
CoAtNet: Marrying Convolution and Attention for All Data Sizes
CoAtNet: Marrying Convolution and Attention for All Data Sizes
Zihang Dai
Hanxiao Liu
Quoc V. Le
Mingxing Tan
ViT
49
1,172
0
09 Jun 2021
Self-Supervised Learning with Data Augmentations Provably Isolates
  Content from Style
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
30
303
0
08 Jun 2021
Data-Efficient Instance Generation from Instance Discrimination
Data-Efficient Instance Generation from Instance Discrimination
Ceyuan Yang
Yujun Shen
Yinghao Xu
Bolei Zhou
33
83
0
08 Jun 2021
LaplaceNet: A Hybrid Graph-Energy Neural Network for Deep
  Semi-Supervised Classification
LaplaceNet: A Hybrid Graph-Energy Neural Network for Deep Semi-Supervised Classification
P. Sellars
Angelica I. Aviles-Rivero
Carola-Bibiane Schönlieb
31
8
0
08 Jun 2021
On the Connection between Local Attention and Dynamic Depth-wise
  Convolution
On the Connection between Local Attention and Dynamic Depth-wise Convolution
Qi Han
Zejia Fan
Qi Dai
Lei-huan Sun
Ming-Ming Cheng
Jiaying Liu
Jingdong Wang
ViT
29
105
0
08 Jun 2021
A Lightweight and Gradient-Stable Neural Layer
A Lightweight and Gradient-Stable Neural Layer
Yueyao Yu
Yin Zhang
29
0
0
08 Jun 2021
Shifting Transformation Learning for Out-of-Distribution Detection
Shifting Transformation Learning for Out-of-Distribution Detection
Sina Mohseni
Arash Vahdat
J. Yadawa
OODD
30
7
0
07 Jun 2021
EventDrop: data augmentation for event-based learning
EventDrop: data augmentation for event-based learning
Fuqiang Gu
Weicong Sng
Xuke Hu
Fei Yu
24
37
0
07 Jun 2021
Antipodes of Label Differential Privacy: PATE and ALIBI
Antipodes of Label Differential Privacy: PATE and ALIBI
Mani Malek
Ilya Mironov
Karthik Prasad
I. Shilov
Florian Tramèr
16
62
0
07 Jun 2021
RegMix: Data Mixing Augmentation for Regression
RegMix: Data Mixing Augmentation for Regression
Seonghyeon Hwang
Steven Euijong Whang
UQCV
23
7
0
07 Jun 2021
CAPE: Encoding Relative Positions with Continuous Augmented Positional
  Embeddings
CAPE: Encoding Relative Positions with Continuous Augmented Positional Embeddings
Tatiana Likhomanenko
Qiantong Xu
Gabriel Synnaeve
R. Collobert
A. Rogozhnikov
OOD
ViT
33
55
0
06 Jun 2021
RegionViT: Regional-to-Local Attention for Vision Transformers
RegionViT: Regional-to-Local Attention for Vision Transformers
Chun-Fu Chen
Yikang Shen
Quanfu Fan
ViT
27
195
0
04 Jun 2021
CATs: Cost Aggregation Transformers for Visual Correspondence
CATs: Cost Aggregation Transformers for Visual Correspondence
Seokju Cho
Sunghwan Hong
Sangryul Jeon
Yunsung Lee
Kwanghoon Sohn
Seungryong Kim
ViT
26
86
0
04 Jun 2021
Glance-and-Gaze Vision Transformer
Glance-and-Gaze Vision Transformer
Qihang Yu
Yingda Xia
Yutong Bai
Yongyi Lu
Alan Yuille
Wei Shen
ViT
33
74
0
04 Jun 2021
When Vision Transformers Outperform ResNets without Pre-training or
  Strong Data Augmentations
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations
Xiangning Chen
Cho-Jui Hsieh
Boqing Gong
ViT
35
320
0
03 Jun 2021
SemiFL: Semi-Supervised Federated Learning for Unlabeled Clients with
  Alternate Training
SemiFL: Semi-Supervised Federated Learning for Unlabeled Clients with Alternate Training
Enmao Diao
Jie Ding
Vahid Tarokh
FedML
24
73
0
02 Jun 2021
Tips and Tricks to Improve CNN-based Chest X-ray Diagnosis: A Survey
Tips and Tricks to Improve CNN-based Chest X-ray Diagnosis: A Survey
Changhee Han
Takayuki Okamoto
Koichi Takeuchi
Dimitris Katsios
Andrey Grushnikov
Masaaki Kobayashi
Antoine Choppin
Yuta Kurashina
Yuki Shimahara
16
2
0
02 Jun 2021
You Only Look at One Sequence: Rethinking Transformer in Vision through
  Object Detection
You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection
Yuxin Fang
Bencheng Liao
Xinggang Wang
Jiemin Fang
Jiyang Qi
Rui Wu
Jianwei Niu
Wenyu Liu
ViT
25
316
0
01 Jun 2021
Robust Mutual Learning for Semi-supervised Semantic Segmentation
Robust Mutual Learning for Semi-supervised Semantic Segmentation
Pan Zhang
Bo Zhang
Ting Zhang
Dong Chen
Fang Wen
31
17
0
01 Jun 2021
Exploring the Diversity and Invariance in Yourself for Visual
  Pre-Training Task
Exploring the Diversity and Invariance in Yourself for Visual Pre-Training Task
Longhui Wei
Lingxi Xie
Wen-gang Zhou
Houqiang Li
Qi Tian
SSL
27
3
0
01 Jun 2021
Semi-supervised Models are Strong Unsupervised Domain Adaptation
  Learners
Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners
Yabin Zhang
Haojian Zhang
Bin Deng
Shuai Li
Kui Jia
Lei Zhang
26
25
0
01 Jun 2021
Rethinking Pseudo Labels for Semi-Supervised Object Detection
Rethinking Pseudo Labels for Semi-Supervised Object Detection
Hengduo Li
Zuxuan Wu
Abhinav Shrivastava
Larry S. Davis
16
78
0
01 Jun 2021
Effect of Pre-Training Scale on Intra- and Inter-Domain Full and
  Few-Shot Transfer Learning for Natural and Medical X-Ray Chest Images
Effect of Pre-Training Scale on Intra- and Inter-Domain Full and Few-Shot Transfer Learning for Natural and Medical X-Ray Chest Images
Mehdi Cherti
J. Jitsev
LM&MA
24
23
0
31 May 2021
Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient
  Image Recognition
Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient Image Recognition
Yulin Wang
Rui Huang
S. Song
Zeyi Huang
Gao Huang
ViT
33
189
0
31 May 2021
OpenMatch: Open-set Consistency Regularization for Semi-supervised
  Learning with Outliers
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers
Kuniaki Saito
Donghyun Kim
Kate Saenko
34
63
0
28 May 2021
ResT: An Efficient Transformer for Visual Recognition
ResT: An Efficient Transformer for Visual Recognition
Qing-Long Zhang
Yubin Yang
ViT
29
229
0
28 May 2021
Recent advances and clinical applications of deep learning in medical
  image analysis
Recent advances and clinical applications of deep learning in medical image analysis
Xuxin Chen
Ximing Wang
Kecheng Zhang
K. Fung
T. Thai
K. Moore
Robert S. Mannel
Hong Liu
B. Zheng
Y. Qiu
OOD
18
574
0
27 May 2021
Drawing Multiple Augmentation Samples Per Image During Training
  Efficiently Decreases Test Error
Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error
Stanislav Fort
Andrew Brock
Razvan Pascanu
Soham De
Samuel L. Smith
31
31
0
27 May 2021
Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and
  Interpretable Visual Understanding
Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding
Zizhao Zhang
Han Zhang
Long Zhao
Ting Chen
Sercan Ö. Arik
Tomas Pfister
ViT
25
169
0
26 May 2021
Vision Transformer for Fast and Efficient Scene Text Recognition
Vision Transformer for Fast and Efficient Scene Text Recognition
Rowel Atienza
ViT
25
144
0
18 May 2021
Towards Robust Vision Transformer
Towards Robust Vision Transformer
Xiaofeng Mao
Gege Qi
YueFeng Chen
Xiaodan Li
Ranjie Duan
Shaokai Ye
Yuan He
Hui Xue
ViT
23
187
0
17 May 2021
Vision Transformers are Robust Learners
Vision Transformers are Robust Learners
Sayak Paul
Pin-Yu Chen
ViT
28
308
0
17 May 2021
Semi-supervised Contrastive Learning with Similarity Co-calibration
Semi-supervised Contrastive Learning with Similarity Co-calibration
Yuhang Zhang
Xiaopeng Zhang
Robert C. Qiu
Jie Li
Haohang Xu
Qi Tian
SSL
18
60
0
16 May 2021
Adaptive Test-Time Augmentation for Low-Power CPU
Adaptive Test-Time Augmentation for Low-Power CPU
Luca Mocerino
R. G. Rizzo
Valentino Peluso
A. Calimera
Enrico Macii
TTA
25
4
0
13 May 2021
Segmenter: Transformer for Semantic Segmentation
Segmenter: Transformer for Semantic Segmentation
Robin Strudel
Ricardo Garcia Pinel
Ivan Laptev
Cordelia Schmid
ViT
46
1,430
0
12 May 2021
Object-Based Augmentation Improves Quality of Remote Sensing Semantic
  Segmentation
Object-Based Augmentation Improves Quality of Remote Sensing Semantic Segmentation
S. Illarionova
S. Nesteruk
Dmitrii G. Shadrin
V. Ignatiev
M. Pukalchik
Ivan Oseledets
11
5
0
12 May 2021
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy
  Labels
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels
Erik Englesson
Hossein Azizpour
NoLa
34
104
0
10 May 2021
TextAdaIN: Paying Attention to Shortcut Learning in Text Recognizers
TextAdaIN: Paying Attention to Shortcut Learning in Text Recognizers
Oren Nuriel
Sharon Fogel
Ron Litman
27
9
0
09 May 2021
Conformer: Local Features Coupling Global Representations for Visual
  Recognition
Conformer: Local Features Coupling Global Representations for Visual Recognition
Zhiliang Peng
Wei Huang
Shanzhi Gu
Lingxi Xie
Yaowei Wang
Jianbin Jiao
QiXiang Ye
ViT
21
528
0
09 May 2021
ResMLP: Feedforward networks for image classification with
  data-efficient training
ResMLP: Feedforward networks for image classification with data-efficient training
Hugo Touvron
Piotr Bojanowski
Mathilde Caron
Matthieu Cord
Alaaeldin El-Nouby
...
Gautier Izacard
Armand Joulin
Gabriel Synnaeve
Jakob Verbeek
Hervé Jégou
VLM
36
656
0
07 May 2021
A Survey of Data Augmentation Approaches for NLP
A Survey of Data Augmentation Approaches for NLP
Steven Y. Feng
Varun Gangal
Jason W. Wei
Sarath Chandar
Soroush Vosoughi
Teruko Mitamura
Eduard H. Hovy
AIMat
44
799
0
07 May 2021
MiCE: Mixture of Contrastive Experts for Unsupervised Image Clustering
MiCE: Mixture of Contrastive Experts for Unsupervised Image Clustering
Tsung Wei Tsai
Chongxuan Li
Jun Zhu
19
59
0
05 May 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
292
2,611
0
04 May 2021
AutoFlow: Learning a Better Training Set for Optical Flow
AutoFlow: Learning a Better Training Set for Optical Flow
Deqing Sun
Daniel Vlasic
Charles Herrmann
Varun Jampani
Michael Krainin
Huiwen Chang
Ramin Zabih
William T. Freeman
Ce Liu
3DPC
37
113
0
29 Apr 2021
Generalization Guarantees for Neural Architecture Search with
  Train-Validation Split
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
Vision Transformers with Patch Diversification
Vision Transformers with Patch Diversification
Chengyue Gong
Dilin Wang
Meng Li
Vikas Chandra
Qiang Liu
ViT
45
62
0
26 Apr 2021
Visformer: The Vision-friendly Transformer
Visformer: The Vision-friendly Transformer
Zhengsu Chen
Lingxi Xie
Jianwei Niu
Xuefeng Liu
Longhui Wei
Qi Tian
ViT
120
209
0
26 Apr 2021
Width Transfer: On the (In)variance of Width Optimization
Width Transfer: On the (In)variance of Width Optimization
Ting-Wu Chin
Diana Marculescu
Ari S. Morcos
18
3
0
24 Apr 2021
Multiscale Vision Transformers
Multiscale Vision Transformers
Haoqi Fan
Bo Xiong
K. Mangalam
Yanghao Li
Zhicheng Yan
Jitendra Malik
Christoph Feichtenhofer
ViT
63
1,224
0
22 Apr 2021
Previous
123...343536...394041
Next