ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00997
14
2

Tips and Tricks to Improve CNN-based Chest X-ray Diagnosis: A Survey

2 June 2021
Changhee Han
Takayuki Okamoto
Koichi Takeuchi
Dimitris Katsios
Andrey Grushnikov
Masaaki Kobayashi
Antoine Choppin
Yuta Kurashina
Yuki Shimahara
ArXivPDFHTML
Abstract

Convolutional Neural Networks (CNNs) intrinsically requires large-scale data whereas Chest X-Ray (CXR) images tend to be data/annotation-scarce, leading to over-fitting. Therefore, based on our development experience and related work, this paper thoroughly introduces tricks to improve generalization in the CXR diagnosis: how to (i) leverage additional data, (ii) augment/distillate data, (iii) regularize training, and (iv) conduct efficient segmentation. As a development example based on such optimization techniques, we also feature LPIXEL's CNN-based CXR solution, EIRL Chest Nodule, which improved radiologists/non-radiologists' nodule detection sensitivity by 0.100/0.131, respectively, while maintaining specificity.

View on arXiv
Comments on this paper