ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.06386
  4. Cited By
Geometric Disentanglement for Generative Latent Shape Models

Geometric Disentanglement for Generative Latent Shape Models

18 August 2019
Tristan Aumentado-Armstrong
Stavros Tsogkas
Allan D. Jepson
Sven J. Dickinson
    DRL
ArXivPDFHTML

Papers citing "Geometric Disentanglement for Generative Latent Shape Models"

39 / 39 papers shown
Title
DualContrast: Unsupervised Disentangling of Content and Transformations with Implicit Parameterization
DualContrast: Unsupervised Disentangling of Content and Transformations with Implicit Parameterization
M. R. Uddin
Min Xu
82
0
0
27 May 2024
Implicit Functions in Feature Space for 3D Shape Reconstruction and
  Completion
Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
Julian Chibane
Thiemo Alldieck
Gerard Pons-Moll
3DPC
108
496
0
03 Mar 2020
Shape retrieval of non-rigid 3d human models
Shape retrieval of non-rigid 3d human models
D. Pickup
Xingwu Sun
Paul L. Rosin
Ralph Robert Martin
Zihao Cheng
...
Yaojie Lu
Lin Sun
G. Tam
A. Tatsuma
J Ye
3DH
18
37
0
01 Mar 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
321
10,591
0
17 Feb 2020
Learning Disentangled Representations with Reference-Based Variational
  Autoencoders
Learning Disentangled Representations with Reference-Based Variational Autoencoders
Adria Ruiz
Oriol Martínez
Xavier Binefa
Jakob Verbeek
OOD
CoGe
DRL
39
26
0
24 Jan 2019
Learning to Sample
Learning to Sample
Oren Dovrat
Itai Lang
S. Avidan
3DPC
18
4
0
04 Dec 2018
Disentangling Latent Factors of Variational Auto-Encoder with Whitening
Disentangling Latent Factors of Variational Auto-Encoder with Whitening
Md. Zahangir Alom
C. Yakopcic
CoGe
DRL
23
2
0
08 Nov 2018
Point Cloud GAN
Point Cloud GAN
Chun-Liang Li
Manzil Zaheer
Yang Zhang
Barnabás Póczós
Ruslan Salakhutdinov
3DPC
76
211
0
13 Oct 2018
Hyperprior Induced Unsupervised Disentanglement of Latent
  Representations
Hyperprior Induced Unsupervised Disentanglement of Latent Representations
Abdul Fatir Ansari
Harold Soh
CoGe
CML
UD
DRL
51
31
0
12 Sep 2018
Group-based Learning of Disentangled Representations with
  Generalizability for Novel Contents
Group-based Learning of Disentangled Representations with Generalizability for Novel Contents
H. Hosoya
OOD
BDL
DRL
26
9
0
07 Sep 2018
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
146
328
0
13 Jun 2018
Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point
  Clouds
Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds
Pedro Hermosilla
Tobias Ritschel
Pere-Pau Vázquez
À. Vinacua
Timo Ropinski
3DPC
94
260
0
05 Jun 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGe
DRL
57
829
0
10 Apr 2018
Structured Disentangled Representations
Structured Disentangled Representations
Babak Esmaeili
Hao Wu
Sarthak Jain
Alican Bozkurt
N. Siddharth
Brooks Paige
Dana H. Brooks
Jennifer Dy
Jan-Willem van de Meent
OOD
CML
BDL
DRL
69
165
0
06 Apr 2018
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional
  Filters
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters
Yifan Xu
Tianqi Fan
Mingye Xu
Long Zeng
Yu Qiao
3DV
3DPC
208
770
0
30 Mar 2018
Point Convolutional Neural Networks by Extension Operators
Point Convolutional Neural Networks by Extension Operators
Matan Atzmon
Haggai Maron
Y. Lipman
3DPC
55
538
0
27 Mar 2018
SO-Net: Self-Organizing Network for Point Cloud Analysis
SO-Net: Self-Organizing Network for Point Cloud Analysis
Jiaxin Li
Ben M. Chen
Gim Hee Lee
3DPC
68
937
0
12 Mar 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
62
1,346
0
16 Feb 2018
Auto-Encoding Total Correlation Explanation
Auto-Encoding Total Correlation Explanation
Shuyang Gao
Rob Brekelmans
Greg Ver Steeg
Aram Galstyan
BDL
DRL
66
78
0
16 Feb 2018
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DV
126
1,182
0
15 Feb 2018
Variational Inference of Disentangled Latent Concepts from Unlabeled
  Observations
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Abhishek Kumar
P. Sattigeri
Avinash Balakrishnan
BDL
DRL
78
523
0
02 Nov 2017
Variational Autoencoders for Deforming 3D Mesh Models
Variational Autoencoders for Deforming 3D Mesh Models
Qingyang Tan
Lin Gao
Yu-kun Lai
Shi-hong Xia
AI4CE
61
198
0
13 Sep 2017
A Two-Step Disentanglement Method
A Two-Step Disentanglement Method
Naama Hadad
Lior Wolf
Shimon Shahar
53
80
0
01 Sep 2017
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
  Space
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
C. Qi
L. Yi
Hao Su
Leonidas Guibas
3DPC
3DV
315
11,062
0
07 Jun 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
113
362
0
01 Jun 2017
Multi-Level Variational Autoencoder: Learning Disentangled
  Representations from Grouped Observations
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
Diane Bouchacourt
Ryota Tomioka
Sebastian Nowozin
BDL
OOD
DRL
54
312
0
24 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GAN
BDL
66
632
0
19 May 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
BDL
110
529
0
17 Jan 2017
Learning from Synthetic Humans
Learning from Synthetic Humans
Gül Varol
Javier Romero
Xavier Martin
Naureen Mahmood
Michael J. Black
Ivan Laptev
Cordelia Schmid
3DH
93
972
0
05 Jan 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH
3DPC
3DV
PINN
444
14,264
0
02 Dec 2016
3D Menagerie: Modeling the 3D shape and pose of animals
3D Menagerie: Modeling the 3D shape and pose of animals
Silvia Zuffi
Angjoo Kanazawa
David Jacobs
Michael J. Black
3DH
79
385
0
23 Nov 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
338
10,467
0
21 Jul 2016
Early Visual Concept Learning with Unsupervised Deep Learning
Early Visual Concept Learning with Unsupervised Deep Learning
I. Higgins
Loic Matthey
Xavier Glorot
Arka Pal
Benigno Uria
Charles Blundell
S. Mohamed
Alexander Lerchner
CoGe
OCL
DRL
61
173
0
17 Jun 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
157
4,232
0
12 Jun 2016
Autoencoding beyond pixels using a learned similarity metric
Autoencoding beyond pixels using a learned similarity metric
Anders Boesen Lindbo Larsen
Søren Kaae Sønderby
Hugo Larochelle
Ole Winther
GAN
163
2,066
0
31 Dec 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
419
43,234
0
11 Feb 2015
Multi-view Face Detection Using Deep Convolutional Neural Networks
Multi-view Face Detection Using Deep Convolutional Neural Networks
S. Farfade
M. Saberian
Li Li
CVBM
75
577
0
10 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
224
12,422
0
24 Jun 2012
1