ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.07945
  4. Cited By
MintNet: Building Invertible Neural Networks with Masked Convolutions

MintNet: Building Invertible Neural Networks with Masked Convolutions

18 July 2019
Yang Song
Chenlin Meng
Stefano Ermon
ArXivPDFHTML

Papers citing "MintNet: Building Invertible Neural Networks with Masked Convolutions"

24 / 24 papers shown
Title
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Ben Liu
Zhen Qin
22
0
0
19 May 2025
Invertible Diffusion Models for Compressed Sensing
Invertible Diffusion Models for Compressed Sensing
Bin Chen
Zhenyu Zhang
Weiqi Li
Chen Zhao
Jiwen Yu
Shijie Zhao
Jie Chen
Jian Zhang
DiffM
59
5
0
25 Mar 2024
Classification Diffusion Models: Revitalizing Density Ratio Estimation
Classification Diffusion Models: Revitalizing Density Ratio Estimation
Shahar Yadin
Noam Elata
T. Michaeli
DiffM
48
1
0
15 Feb 2024
PaReprop: Fast Parallelized Reversible Backpropagation
PaReprop: Fast Parallelized Reversible Backpropagation
Tyler Lixuan Zhu
K. Mangalam
19
1
0
15 Jun 2023
Training Energy-Based Normalizing Flow with Score-Matching Objectives
Training Energy-Based Normalizing Flow with Score-Matching Objectives
Chen-Hao Chao
Wei-Fang Sun
Yen-Chang Hsu
Z. Kira
Chun-Yi Lee
33
3
0
24 May 2023
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Tianqi Cui
Tom S. Bertalan
George J. Pappas
M. Morari
Ioannis G. Kevrekidis
Mahyar Fazlyab
AAML
27
2
0
27 Jan 2023
FInC Flow: Fast and Invertible $k \times k$ Convolutions for Normalizing
  Flows
FInC Flow: Fast and Invertible k×kk \times kk×k Convolutions for Normalizing Flows
Aditya Kallappa
Sandeep Nagar
Girish Varma
27
2
0
23 Jan 2023
Re^2TAL: Rewiring Pretrained Video Backbones for Reversible Temporal
  Action Localization
Re^2TAL: Rewiring Pretrained Video Backbones for Reversible Temporal Action Localization
Chen Zhao
Shuming Liu
K. Mangalam
Guohao Li
40
17
0
25 Nov 2022
SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian
  Networks
SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian Networks
Jacobie Mouton
Steve Kroon
DRL
BDL
26
0
0
23 Apr 2022
A Compact Neural Network-based Algorithm for Robust Image Watermarking
A Compact Neural Network-based Algorithm for Robust Image Watermarking
Hongcai Xu
Rong Wang
Jia Wei
Shao-Ping Lu
29
13
0
27 Dec 2021
Featurized Density Ratio Estimation
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
22
22
0
05 Jul 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
222
402
0
10 Feb 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
96
6,126
0
26 Nov 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural
  Networks
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
30
28
0
02 Jun 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Accelerating Feedforward Computation via Parallel Nonlinear Equation
  Solving
Accelerating Feedforward Computation via Parallel Nonlinear Equation Solving
Yang Song
Chenlin Meng
Renjie Liao
Stefano Ermon
17
28
0
10 Feb 2020
Learning Discrete Distributions by Dequantization
Learning Discrete Distributions by Dequantization
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
DRL
34
31
0
30 Jan 2020
Semi-Supervised Learning with Normalizing Flows
Semi-Supervised Learning with Normalizing Flows
Pavel Izmailov
Polina Kirichenko
Marc Finzi
A. Wilson
DRL
BDL
40
111
0
30 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
67
1,635
0
05 Dec 2019
FIS-GAN: GAN with Flow-based Importance Sampling
FIS-GAN: GAN with Flow-based Importance Sampling
Shiyu Yi
Donglin Zhan
Wenqing Zhang
Zhengyang Geng
Kang An
Hao Wang
GAN
29
3
0
06 Oct 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation
  and Bayesian Inference
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
13
45
0
25 May 2019
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
275
2,553
0
25 Jan 2016
1