Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.07945
Cited By
MintNet: Building Invertible Neural Networks with Masked Convolutions
18 July 2019
Yang Song
Chenlin Meng
Stefano Ermon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MintNet: Building Invertible Neural Networks with Masked Convolutions"
24 / 24 papers shown
Title
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Ben Liu
Zhen Qin
22
0
0
19 May 2025
Invertible Diffusion Models for Compressed Sensing
Bin Chen
Zhenyu Zhang
Weiqi Li
Chen Zhao
Jiwen Yu
Shijie Zhao
Jie Chen
Jian Zhang
DiffM
59
5
0
25 Mar 2024
Classification Diffusion Models: Revitalizing Density Ratio Estimation
Shahar Yadin
Noam Elata
T. Michaeli
DiffM
48
1
0
15 Feb 2024
PaReprop: Fast Parallelized Reversible Backpropagation
Tyler Lixuan Zhu
K. Mangalam
17
1
0
15 Jun 2023
Training Energy-Based Normalizing Flow with Score-Matching Objectives
Chen-Hao Chao
Wei-Fang Sun
Yen-Chang Hsu
Z. Kira
Chun-Yi Lee
33
3
0
24 May 2023
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Tianqi Cui
Tom S. Bertalan
George J. Pappas
M. Morari
Ioannis G. Kevrekidis
Mahyar Fazlyab
AAML
27
2
0
27 Jan 2023
FInC Flow: Fast and Invertible
k
×
k
k \times k
k
×
k
Convolutions for Normalizing Flows
Aditya Kallappa
Sandeep Nagar
Girish Varma
27
2
0
23 Jan 2023
Re^2TAL: Rewiring Pretrained Video Backbones for Reversible Temporal Action Localization
Chen Zhao
Shuming Liu
K. Mangalam
Guohao Li
40
17
0
25 Nov 2022
SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian Networks
Jacobie Mouton
Steve Kroon
DRL
BDL
26
0
0
23 Apr 2022
A Compact Neural Network-based Algorithm for Robust Image Watermarking
Hongcai Xu
Rong Wang
Jia Wei
Shao-Ping Lu
29
13
0
27 Dec 2021
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
22
22
0
05 Jul 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
222
402
0
10 Feb 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
96
6,126
0
26 Nov 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
30
28
0
02 Jun 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Accelerating Feedforward Computation via Parallel Nonlinear Equation Solving
Yang Song
Chenlin Meng
Renjie Liao
Stefano Ermon
17
28
0
10 Feb 2020
Learning Discrete Distributions by Dequantization
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
DRL
34
31
0
30 Jan 2020
Semi-Supervised Learning with Normalizing Flows
Pavel Izmailov
Polina Kirichenko
Marc Finzi
A. Wilson
DRL
BDL
40
111
0
30 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
67
1,635
0
05 Dec 2019
FIS-GAN: GAN with Flow-based Importance Sampling
Shiyu Yi
Donglin Zhan
Wenqing Zhang
Zhengyang Geng
Kang An
Hao Wang
GAN
29
3
0
06 Oct 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
13
45
0
25 May 2019
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
275
2,553
0
25 Jan 2016
1