Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.06986
Cited By
Stochastic gradient Markov chain Monte Carlo
16 July 2019
Christopher Nemeth
Paul Fearnhead
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic gradient Markov chain Monte Carlo"
22 / 22 papers shown
Title
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
30
2
0
16 May 2025
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
84
3
0
28 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
49
4
0
14 Oct 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Lorenzo Mauri
Giacomo Zanella
30
3
0
14 May 2024
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
29
0
0
05 Mar 2024
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
29
4
0
25 Oct 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
25
5
0
14 Jun 2023
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
41
2
0
05 Jun 2023
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
45
4
0
21 Apr 2023
MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected Reconstruction
Xu Tan
Jiawei Yang
Junqi Chen
S. Rahardja
S. Rahardja
UQCV
16
1
0
03 Apr 2023
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
28
0
0
18 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
35
21
0
15 Dec 2022
TEDL: A Two-stage Evidential Deep Learning Method for Classification Uncertainty Quantification
Xue Li
Wei Shen
Denis Xavier Charles
UQCV
EDL
35
3
0
12 Sep 2022
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
27
15
0
01 Aug 2022
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
22
8
0
06 Dec 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
35
1,109
0
07 Jul 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
30
9
0
30 May 2021
A hybrid Gibbs sampler for edge-preserving tomographic reconstruction with uncertain view angles
Felipe Uribe
Johnathan M. Bardsley
Yiqiu Dong
P. Hansen
N. A. B. Riis
16
10
0
14 Apr 2021
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
58
231
0
11 Jul 2016
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Wenzhe Li
Sungjin Ahn
Max Welling
BDL
34
42
0
16 Oct 2015
1