ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.06986
  4. Cited By
Stochastic gradient Markov chain Monte Carlo

Stochastic gradient Markov chain Monte Carlo

16 July 2019
Christopher Nemeth
Paul Fearnhead
    BDL
ArXivPDFHTML

Papers citing "Stochastic gradient Markov chain Monte Carlo"

19 / 19 papers shown
Title
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
82
3
0
28 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
43
4
0
14 Oct 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Lorenzo Mauri
Giacomo Zanella
30
3
0
14 May 2024
Scalable Bayesian inference for the generalized linear mixed model
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
29
0
0
05 Mar 2024
Coreset Markov Chain Monte Carlo
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
21
4
0
25 Oct 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin
  Integrators
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
23
5
0
14 Jun 2023
Gibbs Sampling the Posterior of Neural Networks
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
36
2
0
05 Jun 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
36
4
0
21 Apr 2023
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
J. Zavadlav
27
21
0
15 Dec 2022
TEDL: A Two-stage Evidential Deep Learning Method for Classification
  Uncertainty Quantification
TEDL: A Two-stage Evidential Deep Learning Method for Classification Uncertainty Quantification
Xue Li
Wei Shen
Denis Xavier Charles
UQCV
EDL
30
3
0
12 Sep 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
22
15
0
01 Aug 2022
Bounding Wasserstein distance with couplings
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
17
8
0
06 Dec 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
27
9
0
30 May 2021
A hybrid Gibbs sampler for edge-preserving tomographic reconstruction
  with uncertain view angles
A hybrid Gibbs sampler for edge-preserving tomographic reconstruction with uncertain view angles
Felipe Uribe
Johnathan M. Bardsley
Yiqiu Dong
P. Hansen
N. A. B. Riis
11
10
0
14 Apr 2021
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
58
231
0
11 Jul 2016
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Wenzhe Li
Sungjin Ahn
Max Welling
BDL
34
42
0
16 Oct 2015
1