ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.02893
  4. Cited By
Invariant Risk Minimization

Invariant Risk Minimization

5 July 2019
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
    OOD
ArXivPDFHTML

Papers citing "Invariant Risk Minimization"

50 / 1,404 papers shown
Title
Mixture Data for Training Cannot Ensure Out-of-distribution
  Generalization
Mixture Data for Training Cannot Ensure Out-of-distribution Generalization
Songming Zhang
Yuxiao Luo
Qizhou Wang
Haoang Chi
Xiaofeng Chen
Bo Han
Jinyan Li
OODD
30
0
0
25 Dec 2023
Revisiting Knowledge Distillation under Distribution Shift
Revisiting Knowledge Distillation under Distribution Shift
Songming Zhang
Ziyu Lyu
Xiaofeng Chen
32
1
0
25 Dec 2023
Construct 3D Hand Skeleton with Commercial WiFi
Construct 3D Hand Skeleton with Commercial WiFi
Sijie Ji
Xuanye Zhang
Yuanqing Zheng
Mo Li
19
14
0
24 Dec 2023
GROOD: Gradient-Aware Out-of-Distribution Detection
GROOD: Gradient-Aware Out-of-Distribution Detection
Mostafa ElAraby
Sabyasachi Sahoo
Y. Pequignot
Paul Novello
Liam Paull
18
0
0
22 Dec 2023
Invariant Anomaly Detection under Distribution Shifts: A Causal
  Perspective
Invariant Anomaly Detection under Distribution Shifts: A Causal Perspective
João B. S. Carvalho
Mengtao Zhang
Robin Geyer
C. Jiménez
J. M. Buhmann
23
5
0
21 Dec 2023
Domain Similarity-Perceived Label Assignment for Domain Generalized
  Underwater Object Detection
Domain Similarity-Perceived Label Assignment for Domain Generalized Underwater Object Detection
Xisheng Li
Wei Li
Pinhao Song
Mingjun Zhang
Jie-Gui Zhou
29
0
0
20 Dec 2023
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
49
2
0
19 Dec 2023
GroupMixNorm Layer for Learning Fair Models
GroupMixNorm Layer for Learning Fair Models
Anubha Pandey
Aditi Rai
Maneet Singh
Deepak L. Bhatt
Tanmoy Bhowmik
22
0
0
19 Dec 2023
Domain Invariant Learning for Gaussian Processes and Bayesian
  Exploration
Domain Invariant Learning for Gaussian Processes and Bayesian Exploration
Xilong Zhao
Siyuan Bian
Yaoyun Zhang
Yuliang Zhang
Qinying Gu
Xinbing Wang
Cheng Zhou
Nanyang Ye
29
1
0
18 Dec 2023
Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution
  Generalization
Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution Generalization
Tianrui Jia
Haoyang Li
Cheng Yang
Tao Tao
Chuan Shi
OOD
37
17
0
18 Dec 2023
Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal
  Approach
Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal Approach
Ziliang Chen
Yongsen Zheng
Zhao-Rong Lai
Quanlong Guan
Liang Lin
CML
31
1
0
15 Dec 2023
Towards Context-Aware Domain Generalization: Understanding the Benefits
  and Limits of Marginal Transfer Learning
Towards Context-Aware Domain Generalization: Understanding the Benefits and Limits of Marginal Transfer Learning
Jens Müller
Lars Kühmichel
Martin Rohbeck
Stefan T. Radev
Ullrich Kothe
OOD
40
0
0
15 Dec 2023
Generalizable Sleep Staging via Multi-Level Domain Alignment
Generalizable Sleep Staging via Multi-Level Domain Alignment
Jiquan Wang
Sha Zhao
Haiteng Jiang
Shijian Li
Tao Li
Gang Pan
47
9
0
13 Dec 2023
Benchmarking Distribution Shift in Tabular Data with TableShift
Benchmarking Distribution Shift in Tabular Data with TableShift
Josh Gardner
Zoran Popovic
Ludwig Schmidt
OOD
24
32
0
10 Dec 2023
Hacking Task Confounder in Meta-Learning
Hacking Task Confounder in Meta-Learning
Wenwen Qiang
Yi Ren
Changwen Zheng
Xingzhe Su
Changwen Zheng
Jingyao Wang
CML
26
8
0
10 Dec 2023
Cross Domain Generative Augmentation: Domain Generalization with Latent
  Diffusion Models
Cross Domain Generative Augmentation: Domain Generalization with Latent Diffusion Models
S. Hemati
Mahdi Beitollahi
A. Estiri
Bassel Al Omari
Xi Chen
Guojun Zhang
19
6
0
08 Dec 2023
Neither hype nor gloom do DNNs justice
Neither hype nor gloom do DNNs justice
Gaurav Malhotra
Christian Tsvetkov
B. D. Evans
24
117
0
08 Dec 2023
GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of
  Aligned Experts
GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of Aligned Experts
Shirley Wu
Kaidi Cao
Bruno Ribeiro
James Zou
J. Leskovec
OOD
16
3
0
07 Dec 2023
Perspectives on the State and Future of Deep Learning - 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
61
4
0
07 Dec 2023
Sim-to-Real Causal Transfer: A Metric Learning Approach to
  Causally-Aware Interaction Representations
Sim-to-Real Causal Transfer: A Metric Learning Approach to Causally-Aware Interaction Representations
Yuejiang Liu
Ahmad Rahimi
Po-Chien Luan
Frano Rajic
Alexandre Alahi
35
3
0
07 Dec 2023
Causality and Explainability for Trustworthy Integrated Pest Management
Causality and Explainability for Trustworthy Integrated Pest Management
Ilias Tsoumas
Vasileios Sitokonstantinou
Georgios Giannarakis
Evagelia Lampiri
C. Athanassiou
Gustau Camps-Valls
C. Kontoes
Ioannis Athanasiadis
28
2
0
07 Dec 2023
Invariance & Causal Representation Learning: Prospects and Limitations
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
Jonas Wahl
Urmi Ninad
Jakob Runge
CML
OOD
51
3
0
06 Dec 2023
f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization
f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization
Sina Baharlouei
Shivam Patel
Meisam Razaviyayn
35
4
0
06 Dec 2023
REST: Enhancing Group Robustness in DNNs through Reweighted Sparse
  Training
REST: Enhancing Group Robustness in DNNs through Reweighted Sparse Training
Jiaxu Zhao
Lu Yin
Shiwei Liu
Meng Fang
Mykola Pechenizkiy
28
2
0
05 Dec 2023
Projection Regret: Reducing Background Bias for Novelty Detection via
  Diffusion Models
Projection Regret: Reducing Background Bias for Novelty Detection via Diffusion Models
Sungik Choi
Hankook Lee
Honglak Lee
Moontae Lee
DiffM
39
7
0
05 Dec 2023
Wild-Tab: A Benchmark For Out-Of-Distribution Generalization In Tabular
  Regression
Wild-Tab: A Benchmark For Out-Of-Distribution Generalization In Tabular Regression
Sergey Kolesnikov
CML
OOD
17
4
0
04 Dec 2023
When accurate prediction models yield harmful self-fulfilling prophecies
When accurate prediction models yield harmful self-fulfilling prophecies
Wouter A. C. van Amsterdam
N. Geloven
Jesse H. Krijthe
Rajesh Ranganath
Giovanni Cina
26
7
0
02 Dec 2023
Class Distribution Shifts in Zero-Shot Learning: Learning Robust
  Representations
Class Distribution Shifts in Zero-Shot Learning: Learning Robust Representations
Y. Slavutsky
Y. Benjamini
VLM
OOD
38
0
0
30 Nov 2023
A Simple Recipe for Language-guided Domain Generalized Segmentation
A Simple Recipe for Language-guided Domain Generalized Segmentation
Mohammad Fahes
Tuan-Hung Vu
Andrei Bursuc
Patrick Pérez
Raoul de Charette
VLM
26
14
0
29 Nov 2023
Out-of-Distribution Generalized Dynamic Graph Neural Network for Human
  Albumin Prediction
Out-of-Distribution Generalized Dynamic Graph Neural Network for Human Albumin Prediction
Zeyang Zhang
Xingwang Li
Fei Teng
Ning Lin
Xueling Zhu
Xin Wang
Wenwu Zhu
OOD
37
11
0
27 Nov 2023
Choosing Wisely and Learning Deeply: Selective Cross-Modality
  Distillation via CLIP for Domain Generalization
Choosing Wisely and Learning Deeply: Selective Cross-Modality Distillation via CLIP for Domain Generalization
Jixuan Leng
Yijiang Li
Haohan Wang
VLM
34
0
0
26 Nov 2023
Algorithmic Fairness Generalization under Covariate and Dependence
  Shifts Simultaneously
Algorithmic Fairness Generalization under Covariate and Dependence Shifts Simultaneously
Chengli Zhao
Kai Jiang
Xintao Wu
Haoliang Wang
Latifur Khan
Christan Earl Grant
Feng Chen
OOD
29
4
0
23 Nov 2023
Environment-Aware Dynamic Graph Learning for Out-of-Distribution
  Generalization
Environment-Aware Dynamic Graph Learning for Out-of-Distribution Generalization
Haonan Yuan
Qingyun Sun
Xingcheng Fu
Ziwei Zhang
Cheng Ji
Hao Peng
Jianxin Li
OOD
30
16
0
18 Nov 2023
Auxiliary Losses for Learning Generalizable Concept-based Models
Auxiliary Losses for Learning Generalizable Concept-based Models
Ivaxi Sheth
Samira Ebrahimi Kahou
32
24
0
18 Nov 2023
MADG: Margin-based Adversarial Learning for Domain Generalization
MADG: Margin-based Adversarial Learning for Domain Generalization
Aveen Dayal
B. VimalK.
Linga Reddy Cenkeramaddi
C. K. Mohan
Abhinav Kumar
Vineeth N. Balasubramanian
OOD
AAML
29
63
0
14 Nov 2023
Concept-wise Fine-tuning Matters in Preventing Negative Transfer
Concept-wise Fine-tuning Matters in Preventing Negative Transfer
Yunqiao Yang
Long-Kai Huang
Ying Wei
38
2
0
12 Nov 2023
Domain Generalization by Learning from Privileged Medical Imaging
  Information
Domain Generalization by Learning from Privileged Medical Imaging Information
Steven Korevaar
Ruwan Tennakoon
Ricky O'Brien
Dwarikanath Mahapatra
Alireza Bab-Hadiasha
OOD
15
0
0
10 Nov 2023
Why Do Probabilistic Clinical Models Fail To Transport Between Sites?
Why Do Probabilistic Clinical Models Fail To Transport Between Sites?
Thomas A. Lasko
Eric V. Strobl
William W Stead
OOD
38
7
0
08 Nov 2023
Plug-and-Play Stability for Intracortical Brain-Computer Interfaces: A
  One-Year Demonstration of Seamless Brain-to-Text Communication
Plug-and-Play Stability for Intracortical Brain-Computer Interfaces: A One-Year Demonstration of Seamless Brain-to-Text Communication
Chaofei Fan
Nick Hahn
Foram Kamdar
Donald T. Avansino
G. Wilson
Leigh R. Hochberg
Krishna V. Shenoy
Jaimie M. Henderson
Francis R. Willett
20
12
0
06 Nov 2023
RELand: Risk Estimation of Landmines via Interpretable Invariant Risk
  Minimization
RELand: Risk Estimation of Landmines via Interpretable Invariant Risk Minimization
Mateo Dulce Rubio
Siqi Zeng
Qi Wang
Didier Alvarado
Francisco Moreno
Hoda Heidari
Fei Fang
35
2
0
06 Nov 2023
Estimating treatment effects from single-arm trials via latent-variable
  modeling
Estimating treatment effects from single-arm trials via latent-variable modeling
Manuel Haussmann
Tran Minh Son Le
Viivi Halla-aho
Samu Kurki
Jussi Leinonen
Miika Koskinen
Samuel Kaski
Harri Lähdesmäki
CML
29
0
0
06 Nov 2023
Detecting Spurious Correlations via Robust Visual Concepts in Real and
  AI-Generated Image Classification
Detecting Spurious Correlations via Robust Visual Concepts in Real and AI-Generated Image Classification
Preetam Prabhu Srikar Dammu
Chirag Shah
40
2
0
03 Nov 2023
Invariant Causal Imitation Learning for Generalizable Policies
Invariant Causal Imitation Learning for Generalizable Policies
Ioana Bica
Daniel Jarrett
Mihaela van der Schaar
CML
OffRL
OOD
57
33
0
02 Nov 2023
Invariant-Feature Subspace Recovery: A New Class of Provable Domain
  Generalization Algorithms
Invariant-Feature Subspace Recovery: A New Class of Provable Domain Generalization Algorithms
Haoxiang Wang
Gargi Balasubramaniam
Haozhe Si
Bo Li
Han Zhao
OOD
35
1
0
02 Nov 2023
MIST: Defending Against Membership Inference Attacks Through
  Membership-Invariant Subspace Training
MIST: Defending Against Membership Inference Attacks Through Membership-Invariant Subspace Training
Jiacheng Li
Ninghui Li
Bruno Ribeiro
30
2
0
02 Nov 2023
Uncertainty quantification and out-of-distribution detection using
  surjective normalizing flows
Uncertainty quantification and out-of-distribution detection using surjective normalizing flows
Simon Dirmeier
Ye Hong
Yanan Xin
Fernando Pérez-Cruz
UQCV
28
1
0
01 Nov 2023
Spuriosity Rankings for Free: A Simple Framework for Last Layer
  Retraining Based on Object Detection
Spuriosity Rankings for Free: A Simple Framework for Last Layer Retraining Based on Object Detection
Mohammad Azizmalayeri
Reza Abbasi
Amir Hosein Haji Mohammad Rezaie
Reihaneh Zohrabi
Mahdi Amiri
M. T. Manzuri
M. Rohban
19
0
0
31 Oct 2023
Domain Generalization in Computational Pathology: Survey and Guidelines
Domain Generalization in Computational Pathology: Survey and Guidelines
Mostafa Jahanifar
M. Raza
Kesi Xu
T. Vuong
R. Jewsbury
...
Neda Zamanitajeddin
Jin Tae Kwak
S. Raza
F. Minhas
Nasir M. Rajpoot
OOD
28
17
0
30 Oct 2023
Does Invariant Graph Learning via Environment Augmentation Learn
  Invariance?
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
OOD
36
34
0
29 Oct 2023
OC-NMN: Object-centric Compositional Neural Module Network for
  Generative Visual Analogical Reasoning
OC-NMN: Object-centric Compositional Neural Module Network for Generative Visual Analogical Reasoning
Rim Assouel
Pau Rodríguez
Perouz Taslakian
David Vazquez
Yoshua Bengio
LRM
OCL
21
0
0
28 Oct 2023
Previous
123...789...272829
Next