Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.02893
Cited By
Invariant Risk Minimization
5 July 2019
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Invariant Risk Minimization"
50 / 1,404 papers shown
Title
Invariant Policy Optimization: Towards Stronger Generalization in Reinforcement Learning
Anoopkumar Sonar
Vincent Pacelli
Anirudha Majumdar
10
53
0
01 Jun 2020
Towards intervention-centric causal reasoning in learning agents
B. Lansdell
LRM
CML
11
0
0
26 May 2020
An Analysis of the Adaptation Speed of Causal Models
Rémi Le Priol
Reza Babanezhad Harikandeh
Yoshua Bengio
Simon Lacoste-Julien
CML
19
14
0
18 May 2020
Adaptive Invariance for Molecule Property Prediction
Wengong Jin
Regina Barzilay
Tommi Jaakkola
6
7
0
05 May 2020
Selecting Data Augmentation for Simulating Interventions
Maximilian Ilse
Jakub M. Tomczak
Patrick Forré
OOD
CML
21
18
0
04 May 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
340
1,960
0
04 May 2020
A Causal View on Robustness of Neural Networks
Cheng Zhang
Kun Zhang
Yingzhen Li
CML
OOD
21
85
0
03 May 2020
Representation Bayesian Risk Decompositions and Multi-Source Domain Adaptation
Xi Wu
Yang Guo
Jiefeng Chen
Yingyu Liang
S. Jha
P. Chalasani
OOD
UQCV
11
6
0
22 Apr 2020
Causality-aware counterfactual confounding adjustment for feature representations learned by deep models
E. C. Neto
AI4CE
OOD
BDL
CML
22
2
0
20 Apr 2020
Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision
Damien Teney
Ehsan Abbasnejad
Anton Van Den Hengel
OOD
SSL
CML
26
118
0
20 Apr 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
55
1,985
0
16 Apr 2020
Continual Reinforcement Learning with Multi-Timescale Replay
Christos Kaplanis
Claudia Clopath
Murray Shanahan
CLL
14
14
0
16 Apr 2020
WQT and DG-YOLO: towards domain generalization in underwater object detection
Hong Liu
Pinhao Song
Runwei Ding
9
26
0
14 Apr 2020
An Empirical Study of Invariant Risk Minimization
Yo Joong Choe
Jiyeon Ham
Kyubyong Park
OOD
20
50
0
10 Apr 2020
Improving out-of-distribution generalization via multi-task self-supervised pretraining
Isabela Albuquerque
Nikhil Naik
Junnan Li
N. Keskar
R. Socher
SSL
OOD
30
40
0
30 Mar 2020
Efficient Domain Generalization via Common-Specific Low-Rank Decomposition
Vihari Piratla
Praneeth Netrapalli
Sunita Sarawagi
OOD
14
216
0
28 Mar 2020
Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable Neural Distribution Alignment
Ben Usman
Avneesh Sud
Nick Dufour
Kate Saenko
OOD
9
13
0
26 Mar 2020
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
179
201
0
22 Mar 2020
Overinterpretation reveals image classification model pathologies
Brandon Carter
Siddhartha Jain
Jonas W. Mueller
David K Gifford
FAtt
30
50
0
19 Mar 2020
Invariant Causal Prediction for Block MDPs
Amy Zhang
Clare Lyle
Shagun Sodhani
Angelos Filos
Marta Z. Kwiatkowska
Joelle Pineau
Y. Gal
Doina Precup
OffRL
AI4CE
OOD
29
139
0
12 Mar 2020
Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift
Rémi Tachet des Combes
Han Zhao
Yu-Xiang Wang
Geoffrey J. Gordon
OOD
AAML
VLM
31
183
0
10 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Unshuffling Data for Improved Generalization
Damien Teney
Ehsan Abbasnejad
Anton Van Den Hengel
OOD
23
76
0
27 Feb 2020
I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models
Adarsh Subbaswamy
S. Saria
OOD
33
14
0
20 Feb 2020
Partial Optimal Transport with Applications on Positive-Unlabeled Learning
Laetitia Chapel
Mokhtar Z. Alaya
Gilles Gasso
OT
4
8
0
19 Feb 2020
Bayes-TrEx: a Bayesian Sampling Approach to Model Transparency by Example
Serena Booth
Yilun Zhou
Ankit J. Shah
J. Shah
BDL
17
2
0
19 Feb 2020
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
24
244
0
11 Feb 2020
Adversarial Filters of Dataset Biases
Ronan Le Bras
Swabha Swayamdipta
Chandra Bhagavatula
Rowan Zellers
Matthew E. Peters
Ashish Sabharwal
Yejin Choi
36
220
0
10 Feb 2020
Time Series Alignment with Global Invariances
Titouan Vayer
R. Tavenard
Laetitia Chapel
Nicolas Courty
Rémi Flamary
Yann Soullard
AI4TS
20
16
0
10 Feb 2020
Few-shot Domain Adaptation by Causal Mechanism Transfer
Takeshi Teshima
Issei Sato
Masashi Sugiyama
OOD
CML
TTA
33
86
0
10 Feb 2020
Causality matters in medical imaging
Daniel Coelho De Castro
Ian Walker
Ben Glocker
CML
23
337
0
17 Dec 2019
Towards Causal VQA: Revealing and Reducing Spurious Correlations by Invariant and Covariant Semantic Editing
Vedika Agarwal
Rakshith Shetty
Mario Fritz
CML
AAML
32
155
0
16 Dec 2019
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
22
206
0
06 Dec 2019
Achieving Robustness in the Wild via Adversarial Mixing with Disentangled Representations
Sven Gowal
Chongli Qin
Po-Sen Huang
taylan. cemgil
Krishnamurthy Dvijotham
Timothy A. Mann
Pushmeet Kohli
AAML
OOD
16
57
0
06 Dec 2019
Observational Overfitting in Reinforcement Learning
Xingyou Song
Yiding Jiang
Stephen Tu
Yilun Du
Behnam Neyshabur
OffRL
33
138
0
06 Dec 2019
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
14
1,194
0
20 Nov 2019
Causality-based Feature Selection: Methods and Evaluations
Kui Yu
Xianjie Guo
Lin Liu
Jiuyong Li
Hao Wang
Zhaolong Ling
Xindong Wu
CML
24
92
0
17 Nov 2019
Increasing Robustness to Spurious Correlations using Forgettable Examples
Yadollah Yaghoobzadeh
Soroush Mehri
Remi Tachet
Timothy J. Hazen
Alessandro Sordoni
OOD
13
18
0
10 Nov 2019
Generalizing to unseen domains via distribution matching
Isabela Albuquerque
João Monteiro
Mohammad Javad Darvishi Bayazi
T. Falk
Ioannis Mitliagkas
OOD
24
154
0
03 Nov 2019
Causal bootstrapping
Max A. Little
Reham Badawy
CML
10
20
0
21 Oct 2019
Robust Learning with the Hilbert-Schmidt Independence Criterion
D. Greenfeld
Uri Shalit
OOD
22
55
0
01 Oct 2019
Predicting with High Correlation Features
Devansh Arpit
Caiming Xiong
R. Socher
OODD
OOD
14
7
0
01 Oct 2019
Alleviating Privacy Attacks via Causal Learning
Shruti Tople
Amit Sharma
A. Nori
MIACV
OOD
33
32
0
27 Sep 2019
Learning Invariants through Soft Unification
Nuri Cingillioglu
A. Russo
NAI
13
2
0
16 Sep 2019
Modular Meta-Learning with Shrinkage
Yutian Chen
A. Friesen
Feryal M. P. Behbahani
Arnaud Doucet
David Budden
Matthew W. Hoffman
Nando de Freitas
KELM
OffRL
20
35
0
12 Sep 2019
Population-aware Hierarchical Bayesian Domain Adaptation via Multiple-component Invariant Learning
Vishwali Mhasawade
N. Rehman
R. Chunara
OOD
14
9
0
24 Aug 2019
Unsupervised Recalibration
Albert Ziegler
Paweł Czyż
19
1
0
24 Aug 2019
Info Intervention
Heyang Gong
Zhu Ke
CML
16
0
0
24 Jul 2019
Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions
Matthew Faw
Rajat Sen
Karthikeyan Shanmugam
C. Caramanis
Sanjay Shakkottai
33
3
0
23 Jul 2019
A Unifying Causal Framework for Analyzing Dataset Shift-stable Learning Algorithms
Adarsh Subbaswamy
Bryant Chen
S. Saria
OOD
19
18
0
27 May 2019
Previous
1
2
3
...
27
28
29
Next