ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.02893
  4. Cited By
Invariant Risk Minimization

Invariant Risk Minimization

5 July 2019
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
    OOD
ArXivPDFHTML

Papers citing "Invariant Risk Minimization"

50 / 1,404 papers shown
Title
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
33
80
0
27 Oct 2020
TAMPC: A Controller for Escaping Traps in Novel Environments
TAMPC: A Controller for Escaping Traps in Novel Environments
Sheng Zhong
Zhenyuan Zhang
Nima Fazeli
Dmitry Berenson
15
7
0
23 Oct 2020
Algorithms for Causal Reasoning in Probability Trees
Algorithms for Causal Reasoning in Probability Trees
Tim Genewein
Tom McGrath
Grégoire Delétang
Vladimir Mikulik
Miljan Martic
Shane Legg
Pedro A. Ortega
TPM
CML
15
16
0
23 Oct 2020
Coping with Label Shift via Distributionally Robust Optimisation
Coping with Label Shift via Distributionally Robust Optimisation
Junzhe Zhang
A. Menon
Andreas Veit
Srinadh Bhojanapalli
Sanjiv Kumar
S. Sra
OOD
24
70
0
23 Oct 2020
Removing Bias in Multi-modal Classifiers: Regularization by Maximizing
  Functional Entropies
Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies
Itai Gat
Idan Schwartz
A. Schwing
Tamir Hazan
55
89
0
21 Oct 2020
Causal Transfer Random Forest: Combining Logged Data and Randomized
  Experiments for Robust Prediction
Causal Transfer Random Forest: Combining Logged Data and Randomized Experiments for Robust Prediction
Shuxi Zeng
Murat Ali Bayir
Joel Pfeiffer
Denis Xavier Charles
Emre Kıcıman
TTA
13
18
0
17 Oct 2020
Environment Inference for Invariant Learning
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
17
371
0
14 Oct 2020
The Risks of Invariant Risk Minimization
The Risks of Invariant Risk Minimization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
22
304
0
12 Oct 2020
Learning Invariant Representations and Risks for Semi-supervised Domain
  Adaptation
Learning Invariant Representations and Risks for Semi-supervised Domain Adaptation
Bo-wen Li
Yezhen Wang
Shanghang Zhang
Dongsheng Li
Trevor Darrell
Kurt Keutzer
Han Zhao
OOD
14
93
0
09 Oct 2020
Online Safety Assurance for Deep Reinforcement Learning
Online Safety Assurance for Deep Reinforcement Learning
Noga H. Rotman
Michael Schapira
Aviv Tamar
OffRL
36
5
0
07 Oct 2020
Exploiting non-i.i.d. data towards more robust machine learning
  algorithms
Exploiting non-i.i.d. data towards more robust machine learning algorithms
W. Casteels
P. Hellinckx
OOD
CML
11
1
0
07 Oct 2020
Explaining The Efficacy of Counterfactually Augmented Data
Explaining The Efficacy of Counterfactually Augmented Data
Divyansh Kaushik
Amrith Rajagopal Setlur
Eduard H. Hovy
Zachary Chase Lipton
CML
20
81
0
05 Oct 2020
Think before you act: A simple baseline for compositional generalization
Think before you act: A simple baseline for compositional generalization
C. Heinze-Deml
Diane Bouchacourt
CoGe
15
16
0
29 Sep 2020
How Neural Networks Extrapolate: From Feedforward to Graph Neural
  Networks
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
19
305
0
24 Sep 2020
MUTANT: A Training Paradigm for Out-of-Distribution Generalization in
  Visual Question Answering
MUTANT: A Training Paradigm for Out-of-Distribution Generalization in Visual Question Answering
Tejas Gokhale
Pratyay Banerjee
Chitta Baral
Yezhou Yang
OOD
14
139
0
18 Sep 2020
Synbols: Probing Learning Algorithms with Synthetic Datasets
Synbols: Probing Learning Algorithms with Synthetic Datasets
Alexandre Lacoste
Pau Rodríguez
Frederic Branchaud-Charron
Parmida Atighehchian
Massimo Caccia
I. Laradji
Alexandre Drouin
Matt Craddock
Laurent Charlin
David Vázquez
31
14
0
14 Sep 2020
Fairness in the Eyes of the Data: Certifying Machine-Learning Models
Fairness in the Eyes of the Data: Certifying Machine-Learning Models
Shahar Segal
Yossi Adi
Benny Pinkas
Carsten Baum
C. Ganesh
Joseph Keshet
FedML
13
34
0
03 Sep 2020
Learning explanations that are hard to vary
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
21
178
0
01 Sep 2020
Learning to Balance Specificity and Invariance for In and Out of Domain
  Generalization
Learning to Balance Specificity and Invariance for In and Out of Domain Generalization
Prithvijit Chattopadhyay
Yogesh Balaji
Judy Hoffman
OOD
23
204
0
28 Aug 2020
How Useful Are the Machine-Generated Interpretations to General Users? A
  Human Evaluation on Guessing the Incorrectly Predicted Labels
How Useful Are the Machine-Generated Interpretations to General Users? A Human Evaluation on Guessing the Incorrectly Predicted Labels
Hua Shen
Ting-Hao 'Kenneth' Huang
FAtt
HAI
9
56
0
26 Aug 2020
Model Patching: Closing the Subgroup Performance Gap with Data
  Augmentation
Model Patching: Closing the Subgroup Performance Gap with Data Augmentation
Karan Goel
Albert Gu
Yixuan Li
Christopher Ré
10
118
0
15 Aug 2020
Null-sampling for Interpretable and Fair Representations
Null-sampling for Interpretable and Fair Representations
T. Kehrenberg
Myles Bartlett
Oliver Thomas
Novi Quadrianto
OOD
12
29
0
12 Aug 2020
BREEDS: Benchmarks for Subpopulation Shift
BREEDS: Benchmarks for Subpopulation Shift
Shibani Santurkar
Dimitris Tsipras
A. Madry
OOD
16
168
0
11 Aug 2020
When is invariance useful in an Out-of-Distribution Generalization
  problem ?
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
34
65
0
04 Aug 2020
Learning Invariant Feature Representation to Improve Generalization
  across Chest X-ray Datasets
Learning Invariant Feature Representation to Improve Generalization across Chest X-ray Datasets
S. Ghimire
Satyananda Kashyap
Joy T. Wu
Alexandros Karargyris
Mehdi Moradi
OOD
18
8
0
04 Aug 2020
Out-of-distribution Generalization via Partial Feature Decorrelation
Out-of-distribution Generalization via Partial Feature Decorrelation
Xin Guo
Zhengxu Yu
Chao Xiang
Zhongming Jin
Jianqiang Huang
Deng Cai
Xiaofei He
Xiansheng Hua
OODD
OOD
12
0
0
30 Jul 2020
Accounting for Unobserved Confounding in Domain Generalization
Accounting for Unobserved Confounding in Domain Generalization
Alexis Bellot
M. Schaar
CML
OOD
17
23
0
21 Jul 2020
Learning Structured Latent Factors from Dependent Data:A Generative
  Model Framework from Information-Theoretic Perspective
Learning Structured Latent Factors from Dependent Data:A Generative Model Framework from Information-Theoretic Perspective
Ruixiang Zhang
Masanori Koyama
Katsuhiko Ishiguro
CML
6
6
0
21 Jul 2020
An Empirical Study on Robustness to Spurious Correlations using
  Pre-trained Language Models
An Empirical Study on Robustness to Spurious Correlations using Pre-trained Language Models
Lifu Tu
Garima Lalwani
Spandana Gella
He He
LRM
21
184
0
14 Jul 2020
Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
  Classification
Adversarially-Trained Deep Nets Transfer Better: Illustration on Image Classification
Francisco Utrera
Evan Kravitz
N. Benjamin Erichson
Rekha Khanna
Michael W. Mahoney
GAN
19
33
0
11 Jul 2020
Generative Compositional Augmentations for Scene Graph Prediction
Generative Compositional Augmentations for Scene Graph Prediction
Boris Knyazev
H. D. Vries
Cătălina Cangea
Graham W. Taylor
Aaron Courville
Eugene Belilovsky
18
25
0
11 Jul 2020
Robust Classification under Class-Dependent Domain Shift
Robust Classification under Class-Dependent Domain Shift
T. Galstyan
Hrant Khachatrian
Greg Ver Steeg
Aram Galstyan
OOD
11
2
0
10 Jul 2020
Predicting the Accuracy of a Few-Shot Classifier
Predicting the Accuracy of a Few-Shot Classifier
Myriam Bontonou
Louis Bethune
Vincent Gripon
8
4
0
08 Jul 2020
Adaptive Risk Minimization: Learning to Adapt to Domain Shift
Adaptive Risk Minimization: Learning to Adapt to Domain Shift
Marvin Zhang
Henrik Marklund
Nikita Dhawan
Abhishek Gupta
Sergey Levine
Chelsea Finn
OOD
11
197
0
06 Jul 2020
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
26
1,112
0
02 Jul 2020
A No-Free-Lunch Theorem for MultiTask Learning
A No-Free-Lunch Theorem for MultiTask Learning
Steve Hanneke
Samory Kpotufe
18
39
0
29 Jun 2020
A causal view of compositional zero-shot recognition
A causal view of compositional zero-shot recognition
Y. Atzmon
Felix Kreuk
Uri Shalit
Gal Chechik
OCL
BDL
CML
61
117
0
25 Jun 2020
Target Consistency for Domain Adaptation: when Robustness meets
  Transferability
Target Consistency for Domain Adaptation: when Robustness meets Transferability
Yassine Ouali
Victor Bouvier
Myriam Tami
C´eline Hudelot
OOD
19
3
0
25 Jun 2020
Robust Domain Adaptation: Representations, Weights and Inductive Bias
Robust Domain Adaptation: Representations, Weights and Inductive Bias
Victor Bouvier
P. Very
C. Chastagnol
Myriam Tami
C´eline Hudelot
OOD
16
10
0
24 Jun 2020
Feature Expansive Reward Learning: Rethinking Human Input
Feature Expansive Reward Learning: Rethinking Human Input
Andreea Bobu
Marius Wiggert
Claire Tomlin
Anca Dragan
19
44
0
23 Jun 2020
Counterfactually Guided Off-policy Transfer in Clinical Settings
Counterfactually Guided Off-policy Transfer in Clinical Settings
Taylor W. Killian
Marzyeh Ghassemi
Shalmali Joshi
CML
OffRL
OOD
29
11
0
20 Jun 2020
Representation via Representations: Domain Generalization via
  Adversarially Learned Invariant Representations
Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations
Zhun Deng
Frances Ding
Cynthia Dwork
Rachel Hong
Giovanni Parmigiani
Prasad Patil
Pragya Sur
OOD
FaML
11
29
0
20 Jun 2020
Efficient nonparametric statistical inference on population feature
  importance using Shapley values
Efficient nonparametric statistical inference on population feature importance using Shapley values
B. Williamson
Jean Feng
FAtt
13
70
0
16 Jun 2020
Extrapolatable Relational Reasoning With Comparators in Low-Dimensional
  Manifolds
Extrapolatable Relational Reasoning With Comparators in Low-Dimensional Manifolds
Duo Wang
M. Jamnik
Pietro Lió
OOD
10
1
0
15 Jun 2020
Risk Variance Penalization
Risk Variance Penalization
Chuanlong Xie
Haotian Ye
Fei Chen
Yue Liu
Rui Sun
Zhenguo Li
48
33
0
13 Jun 2020
Domain Generalization using Causal Matching
Domain Generalization using Causal Matching
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
14
325
0
12 Jun 2020
Learning Causal Models Online
Learning Causal Models Online
Khurram Javed
Martha White
Yoshua Bengio
CML
8
33
0
12 Jun 2020
Learning Diverse Representations for Fast Adaptation to Distribution
  Shift
Learning Diverse Representations for Fast Adaptation to Distribution Shift
Daniel Pace
A. Russo
Murray Shanahan
OOD
34
2
0
12 Jun 2020
Stable Adversarial Learning under Distributional Shifts
Stable Adversarial Learning under Distributional Shifts
Jiashuo Liu
Zheyan Shen
Peng Cui
Linjun Zhou
Kun Kuang
Yangqiu Song
Yishi Lin
OOD
27
30
0
08 Jun 2020
Enforcing Predictive Invariance across Structured Biomedical Domains
Enforcing Predictive Invariance across Structured Biomedical Domains
Wengong Jin
Regina Barzilay
Tommi Jaakkola
OOD
24
27
0
06 Jun 2020
Previous
123...26272829
Next