ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.15507
17
14

Construct 3D Hand Skeleton with Commercial WiFi

24 December 2023
Sijie Ji
Xuanye Zhang
Yuanqing Zheng
Mo Li
ArXivPDFHTML
Abstract

This paper presents HandFi, which constructs hand skeletons with practical WiFi devices. Unlike previous WiFi hand sensing systems that primarily employ predefined gestures for pattern matching, by constructing the hand skeleton, HandFi can enable a variety of downstream WiFi-based hand sensing applications in gaming, healthcare, and smart homes. Deriving the skeleton from WiFi signals is challenging, especially because the palm is a dominant reflector compared with fingers. HandFi develops a novel multi-task learning neural network with a series of customized loss functions to capture the low-level hand information from WiFi signals. During offline training, HandFi takes raw WiFi signals as input and uses the leap motion to provide supervision. During online use, only with commercial WiFi, HandFi is capable of producing 2D hand masks as well as 3D hand poses. We demonstrate that HandFi can serve as a foundation model to enable developers to build various applications such as finger tracking and sign language recognition, and outperform existing WiFi-based solutions. Artifacts can be found: https://github.com/SIJIEJI/HandFi

View on arXiv
Comments on this paper