ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10652
  4. Cited By
Monte Carlo Gradient Estimation in Machine Learning

Monte Carlo Gradient Estimation in Machine Learning

25 June 2019
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
ArXivPDFHTML

Papers citing "Monte Carlo Gradient Estimation in Machine Learning"

50 / 88 papers shown
Title
Secrets of GFlowNets' Learning Behavior: A Theoretical Study
Secrets of GFlowNets' Learning Behavior: A Theoretical Study
Tianshu Yu
26
0
0
04 May 2025
Towards Better Alignment: Training Diffusion Models with Reinforcement Learning Against Sparse Rewards
Towards Better Alignment: Training Diffusion Models with Reinforcement Learning Against Sparse Rewards
Zijing Hu
Fengda Zhang
Long Chen
Kun Kuang
Jiahui Li
Kaifeng Gao
Jun Xiao
X. Wang
Wenwu Zhu
EGVM
56
0
0
14 Mar 2025
A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Shashank Gupta
Chaitanya Ahuja
Tsung-Yu Lin
Sreya Dutta Roy
Harrie Oosterhuis
Maarten de Rijke
Satya Narayan Shukla
46
1
0
02 Mar 2025
Preference learning made easy: Everything should be understood through win rate
Preference learning made easy: Everything should be understood through win rate
Lily H. Zhang
Rajesh Ranganath
85
0
0
14 Feb 2025
Rethinking Diffusion Posterior Sampling: From Conditional Score Estimator to Maximizing a Posterior
Rethinking Diffusion Posterior Sampling: From Conditional Score Estimator to Maximizing a Posterior
Tongda Xu
Xiyan Cai
X. Zhang
Xingtong Ge
Dailan He
Ming Sun
Jingjing Liu
Y. Zhang
Jian Li
Yan Wang
DiffM
120
1
0
31 Jan 2025
Learning the Regularization Strength for Deep Fine-Tuning via a Data-Emphasized Variational Objective
Learning the Regularization Strength for Deep Fine-Tuning via a Data-Emphasized Variational Objective
Ethan Harvey
Mikhail Petrov
Michael C. Hughes
45
0
0
28 Jan 2025
Revisiting Ensemble Methods for Stock Trading and Crypto Trading Tasks at ACM ICAIF FinRL Contest 2023-2024
Revisiting Ensemble Methods for Stock Trading and Crypto Trading Tasks at ACM ICAIF FinRL Contest 2023-2024
Nikolaus Holzer
Keyi Wang
Kairong Xiao
Xiao-Yang Liu Yanglet
AIFin
30
1
0
18 Jan 2025
Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
Jiayi Huang
Sangwoo Park
Osvaldo Simeone
105
2
0
03 Jan 2025
L3Ms -- Lagrange Large Language Models
L3Ms -- Lagrange Large Language Models
Guneet S. Dhillon
Xingjian Shi
Yee Whye Teh
Alex Smola
145
0
0
28 Oct 2024
An Efficient On-Policy Deep Learning Framework for Stochastic Optimal Control
An Efficient On-Policy Deep Learning Framework for Stochastic Optimal Control
Mengjian Hua
Matthieu Laurière
Eric Vanden-Eijnden
31
3
0
07 Oct 2024
Stabilizing the Kumaraswamy Distribution
Stabilizing the Kumaraswamy Distribution
Max Wasserman
Gonzalo Mateos
BDL
44
0
0
01 Oct 2024
On the limits of agency in agent-based models
On the limits of agency in agent-based models
Ayush Chopra
Shashank Kumar
Nurullah Giray-Kuru
Ramesh Raskar
Arnau Quera-Bofarull
LLMAG
AI4CE
42
7
0
14 Sep 2024
Alignment of Diffusion Models: Fundamentals, Challenges, and Future
Alignment of Diffusion Models: Fundamentals, Challenges, and Future
Buhua Liu
Shitong Shao
Bao Li
Lichen Bai
Zhiqiang Xu
Haoyi Xiong
James Kwok
Sumi Helal
Zeke Xie
42
12
0
11 Sep 2024
Variational Search Distributions
Variational Search Distributions
Daniel M. Steinberg
Rafael Oliveira
Cheng Soon Ong
Edwin V. Bonilla
33
0
0
10 Sep 2024
Particle Semi-Implicit Variational Inference
Particle Semi-Implicit Variational Inference
Jen Ning Lim
A. M. Johansen
43
3
0
30 Jun 2024
Demystifying SGD with Doubly Stochastic Gradients
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
53
0
0
03 Jun 2024
Learning Latent Graph Structures and their Uncertainty
Learning Latent Graph Structures and their Uncertainty
A. Manenti
Daniele Zambon
Cesare Alippi
BDL
38
1
0
30 May 2024
cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM
cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM
Gabriel Ducrocq
Lukas Grunewald
S. Westenhoff
Fredrik Lindsten
25
1
0
29 May 2024
Deep generative modelling of canonical ensemble with differentiable
  thermal properties
Deep generative modelling of canonical ensemble with differentiable thermal properties
Shuo-Hui Li
Yao-Wen Zhang
Ding Pan
DRL
SyDa
36
1
0
29 Apr 2024
Efficient Combinatorial Optimization via Heat Diffusion
Efficient Combinatorial Optimization via Heat Diffusion
He Ma
Wenlian Lu
Jianfeng Feng
31
1
0
13 Mar 2024
Explaining Probabilistic Models with Distributional Values
Explaining Probabilistic Models with Distributional Values
Luca Franceschi
Michele Donini
Cédric Archambeau
Matthias Seeger
FAtt
37
2
0
15 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
30
2
0
19 Jan 2024
Score-Aware Policy-Gradient Methods and Performance Guarantees using
  Local Lyapunov Conditions: Applications to Product-Form Stochastic Networks
  and Queueing Systems
Score-Aware Policy-Gradient Methods and Performance Guarantees using Local Lyapunov Conditions: Applications to Product-Form Stochastic Networks and Queueing Systems
Céline Comte
Matthieu Jonckheere
J. Sanders
Albert Senen-Cerda
25
0
0
05 Dec 2023
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
21
1
0
26 Sep 2023
Branches of a Tree: Taking Derivatives of Programs with Discrete and
  Branching Randomness in High Energy Physics
Branches of a Tree: Taking Derivatives of Programs with Discrete and Branching Randomness in High Energy Physics
Michael Kagan
Lukas Heinrich
26
9
0
31 Aug 2023
Amortised Experimental Design and Parameter Estimation for User Models
  of Pointing
Amortised Experimental Design and Parameter Estimation for User Models of Pointing
Antti Keurulainen
Isak Westerlund
Oskar Keurulainen
Andrew Howes
20
7
0
19 Jul 2023
Empirical Sample Complexity of Neural Network Mixed State Reconstruction
Empirical Sample Complexity of Neural Network Mixed State Reconstruction
Haimeng Zhao
Giuseppe Carleo
F. Vicentini
18
11
0
04 Jul 2023
Bayesian calibration of differentiable agent-based models
Bayesian calibration of differentiable agent-based models
Arnau Quera-Bofarull
Ayush Chopra
Anisoara Calinescu
Michael Wooldridge
Joel Dyer
26
9
0
24 May 2023
Efficient Halftoning via Deep Reinforcement Learning
Efficient Halftoning via Deep Reinforcement Learning
Haitian Jiang
Dongliang Xiong
Xiaowen Jiang
Li Ding
Liang Chen
Kai Huang
13
3
0
24 Apr 2023
Learning Temporal Distribution and Spatial Correlation Towards Universal
  Moving Object Segmentation
Learning Temporal Distribution and Spatial Correlation Towards Universal Moving Object Segmentation
Guanfang Dong
Chenqiu Zhao
Xichen Pan
Anup Basu
VOS
26
3
0
19 Apr 2023
Differentiable Rendering with Reparameterized Volume Sampling
Differentiable Rendering with Reparameterized Volume Sampling
Nikita Morozov
D. Rakitin
Oleg Desheulin
Dmitry Vetrov
Kirill Struminsky
19
4
0
21 Feb 2023
Directed Acyclic Graphs With Tears
Directed Acyclic Graphs With Tears
Zhichao Chen
Zhiqiang Ge
CML
33
5
0
04 Feb 2023
DAG Learning on the Permutahedron
DAG Learning on the Permutahedron
Valentina Zantedeschi
Luca Franceschi
Jean Kaddour
Matt J. Kusner
Vlad Niculae
27
11
0
27 Jan 2023
Graph state-space models
Graph state-space models
Daniele Zambon
Andrea Cini
L. Livi
Cesare Alippi
23
6
0
04 Jan 2023
RL and Fingerprinting to Select Moving Target Defense Mechanisms for
  Zero-day Attacks in IoT
RL and Fingerprinting to Select Moving Target Defense Mechanisms for Zero-day Attacks in IoT
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jan von der Assen
T. Schenk
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
27
6
0
30 Dec 2022
Debiasing Meta-Gradient Reinforcement Learning by Learning the Outer
  Value Function
Debiasing Meta-Gradient Reinforcement Learning by Learning the Outer Value Function
Clément Bonnet
Laurence Midgley
Alexandre Laterre
24
1
0
19 Nov 2022
Manifold Gaussian Variational Bayes on the Precision Matrix
Manifold Gaussian Variational Bayes on the Precision Matrix
M. Magris
M. Shabani
Alexandros Iosifidis
37
2
0
26 Oct 2022
Arc travel time and path choice model estimation subsumed
Arc travel time and path choice model estimation subsumed
Sobhan Mohammadpour
Emma Frejinger
14
1
0
25 Oct 2022
Automatic Differentiation of Programs with Discrete Randomness
Automatic Differentiation of Programs with Discrete Randomness
Gaurav Arya
Moritz Schauer
Frank Schafer
Chris Rackauckas
23
34
0
16 Oct 2022
Bit Allocation using Optimization
Bit Allocation using Optimization
Tongda Xu
Han-yi Gao
Chenjian Gao
Yuanyuan Wang
Dailan He
...
Mao Ye
Hongwei Qin
Yan Wang
Jingjing Liu
Ya-Qin Zhang
56
14
0
20 Sep 2022
Deep Variational Free Energy Approach to Dense Hydrogen
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
32
9
0
13 Sep 2022
Survival Mixture Density Networks
Survival Mixture Density Networks
Xintian Han
Mark Goldstein
Rajesh Ranganath
28
5
0
23 Aug 2022
A Survey on Model-based Reinforcement Learning
A Survey on Model-based Reinforcement Learning
Fan Luo
Tian Xu
Hang Lai
Xiong-Hui Chen
Weinan Zhang
Yang Yu
OffRL
LRM
44
101
0
19 Jun 2022
A Survey of Automated Data Augmentation Algorithms for Deep
  Learning-based Image Classification Tasks
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
23
39
0
14 Jun 2022
Sparse Graph Learning from Spatiotemporal Time Series
Sparse Graph Learning from Spatiotemporal Time Series
Andrea Cini
Daniele Zambon
Cesare Alippi
CML
AI4TS
37
18
0
26 May 2022
Efficient Deep Visual and Inertial Odometry with Adaptive Visual
  Modality Selection
Efficient Deep Visual and Inertial Odometry with Adaptive Visual Modality Selection
Mingyu Yang
Yu Chen
Hun-Seok Kim
33
27
0
12 May 2022
An Introduction to Quantum Machine Learning for Engineers
An Introduction to Quantum Machine Learning for Engineers
Osvaldo Simeone
11
46
0
11 May 2022
A Brief Overview of Unsupervised Neural Speech Representation Learning
A Brief Overview of Unsupervised Neural Speech Representation Learning
Lasse Borgholt
Jakob Drachmann Havtorn
Joakim Edin
Lars Maaløe
Christian Igel
BDL
AI4TS
SSL
19
11
0
01 Mar 2022
Gradients without Backpropagation
Gradients without Backpropagation
A. G. Baydin
Barak A. Pearlmutter
Don Syme
Frank D. Wood
Philip H. S. Torr
30
66
0
17 Feb 2022
A Differential Entropy Estimator for Training Neural Networks
A Differential Entropy Estimator for Training Neural Networks
Georg Pichler
Pierre Colombo
Malik Boudiaf
Günther Koliander
Pablo Piantanida
25
21
0
14 Feb 2022
12
Next