ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10652
  4. Cited By
Monte Carlo Gradient Estimation in Machine Learning

Monte Carlo Gradient Estimation in Machine Learning

25 June 2019
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
ArXivPDFHTML

Papers citing "Monte Carlo Gradient Estimation in Machine Learning"

41 / 91 papers shown
Title
Gradients without Backpropagation
Gradients without Backpropagation
A. G. Baydin
Barak A. Pearlmutter
Don Syme
Frank D. Wood
Philip H. S. Torr
32
66
0
17 Feb 2022
A Differential Entropy Estimator for Training Neural Networks
A Differential Entropy Estimator for Training Neural Networks
Georg Pichler
Pierre Colombo
Malik Boudiaf
Günther Koliander
Pablo Piantanida
25
21
0
14 Feb 2022
Do Differentiable Simulators Give Better Policy Gradients?
Do Differentiable Simulators Give Better Policy Gradients?
H. Suh
Max Simchowitz
Kaipeng Zhang
Russ Tedrake
30
95
0
02 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
A heteroencoder architecture for prediction of failure locations in
  porous metals using variational inference
A heteroencoder architecture for prediction of failure locations in porous metals using variational inference
Wyatt Bridgman
Xiaoxuan Zhang
G. Teichert
M. Khalil
K. Garikipati
Reese E. Jones
UQCV
AI4CE
16
5
0
31 Jan 2022
Training Hybrid Classical-Quantum Classifiers via Stochastic Variational
  Optimization
Training Hybrid Classical-Quantum Classifiers via Stochastic Variational Optimization
I. Nikoloska
Osvaldo Simeone
17
10
0
21 Jan 2022
$m^\ast$ of two-dimensional electron gas: a neural canonical
  transformation study
m∗m^\astm∗ of two-dimensional electron gas: a neural canonical transformation study
H.-j. Xie
Linfeng Zhang
Lei Wang
28
8
0
10 Jan 2022
Scaling Structured Inference with Randomization
Scaling Structured Inference with Randomization
Yao Fu
John P. Cunningham
Mirella Lapata
BDL
32
2
0
07 Dec 2021
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
Chris Cundy
Aditya Grover
Stefano Ermon
CML
40
72
0
06 Dec 2021
Gradients are Not All You Need
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
28
93
0
10 Nov 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional
  Gaussian Processes
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
20
10
0
08 Nov 2021
Implicit Deep Adaptive Design: Policy-Based Experimental Design without
  Likelihoods
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
13
46
0
03 Nov 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
26
93
0
04 Oct 2021
Stochastic Contrastive Learning
Stochastic Contrastive Learning
Jason Ramapuram
Dan Busbridge
Xavier Suau
Russ Webb
BDL
SSL
44
3
0
01 Oct 2021
Autoregressive neural-network wavefunctions for ab initio quantum
  chemistry
Autoregressive neural-network wavefunctions for ab initio quantum chemistry
Thomas D. Barrett
A. Malyshev
A. Lvovsky
25
69
0
26 Sep 2021
A principled stopping rule for importance sampling
A principled stopping rule for importance sampling
Medha Agarwal
Dootika Vats
Victor Elvira
33
2
0
30 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
43
40
0
09 Aug 2021
Bayesian Active Meta-Learning for Few Pilot Demodulation and
  Equalization
Bayesian Active Meta-Learning for Few Pilot Demodulation and Equalization
K. Cohen
Sangwoo Park
Osvaldo Simeone
S. Shamai
23
12
0
02 Aug 2021
Order Matters: Probabilistic Modeling of Node Sequence for Graph
  Generation
Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation
Xiaohui Chen
Xu Han
Jiajing Hu
Francisco J. R. Ruiz
Liping Liu
BDL
24
34
0
11 Jun 2021
Gradient-based Bayesian Experimental Design for Implicit Models using
  Mutual Information Lower Bounds
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds
Steven Kleinegesse
Michael U. Gutmann
FedML
30
25
0
10 May 2021
Storchastic: A Framework for General Stochastic Automatic
  Differentiation
Storchastic: A Framework for General Stochastic Automatic Differentiation
Emile van Krieken
Jakub M. Tomczak
A. T. Teije
ODL
OffRL
28
15
0
01 Apr 2021
Combining Pessimism with Optimism for Robust and Efficient Model-Based
  Deep Reinforcement Learning
Combining Pessimism with Optimism for Robust and Efficient Model-Based Deep Reinforcement Learning
Sebastian Curi
Ilija Bogunovic
Andreas Krause
39
17
0
18 Mar 2021
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
27
10
0
14 Mar 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
28
78
0
03 Mar 2021
Factored Policy Gradients: Leveraging Structure for Efficient Learning
  in MOMDPs
Factored Policy Gradients: Leveraging Structure for Efficient Learning in MOMDPs
Thomas Spooner
N. Vadori
Sumitra Ganesh
22
7
0
20 Feb 2021
Population synthesis for urban resident modeling using deep generative
  models
Population synthesis for urban resident modeling using deep generative models
M. Johnsen
Oliver Brandt
Sergio Garrido
Francisco Câmara Pereira
24
11
0
13 Nov 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
136
48
0
20 Oct 2020
A Generative Machine Learning Approach to Policy Optimization in
  Pursuit-Evasion Games
A Generative Machine Learning Approach to Policy Optimization in Pursuit-Evasion Games
Shiva Navabi
Osonde A. Osoba
8
2
0
04 Oct 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
25
82
0
15 Jun 2020
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
36
85
0
15 Jun 2020
Model-Augmented Actor-Critic: Backpropagating through Paths
Model-Augmented Actor-Critic: Backpropagating through Paths
I. Clavera
Yao Fu
Pieter Abbeel
33
86
0
16 May 2020
Automated Augmented Conjugate Inference for Non-conjugate Gaussian
  Process Models
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models
Théo Galy-Fajou
F. Wenzel
Manfred Opper
16
4
0
26 Feb 2020
Bayesian Experimental Design for Implicit Models by Mutual Information
  Neural Estimation
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
18
64
0
19 Feb 2020
Meta-Learning to Communicate: Fast End-to-End Training for Fading
  Channels
Meta-Learning to Communicate: Fast End-to-End Training for Fading Channels
Sangwoo Park
Osvaldo Simeone
Joonhyuk Kang
19
51
0
22 Oct 2019
Learning Generalisable Omni-Scale Representations for Person
  Re-Identification
Learning Generalisable Omni-Scale Representations for Person Re-Identification
Kaiyang Zhou
Yongxin Yang
Andrea Cavallaro
Tao Xiang
30
217
0
15 Oct 2019
The Differentiable Cross-Entropy Method
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
26
54
0
27 Sep 2019
Intensity-Free Learning of Temporal Point Processes
Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
19
167
0
26 Sep 2019
Global Optimality Guarantees For Policy Gradient Methods
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
35
185
0
05 Jun 2019
Improving Discrete Latent Representations With Differentiable
  Approximation Bridges
Improving Discrete Latent Representations With Differentiable Approximation Bridges
Jason Ramapuram
Russ Webb
DRL
11
9
0
09 May 2019
(Bandit) Convex Optimization with Biased Noisy Gradient Oracles
(Bandit) Convex Optimization with Biased Noisy Gradient Oracles
Xiaowei Hu
A. PrashanthL.
András Gyorgy
Csaba Szepesvári
78
65
0
22 Sep 2016
Stochastic Backpropagation through Mixture Density Distributions
Stochastic Backpropagation through Mixture Density Distributions
Alex Graves
BDL
51
44
0
19 Jul 2016
Previous
12