ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03260
  4. Cited By
Reliable training and estimation of variance networks

Reliable training and estimation of variance networks

4 June 2019
N. Detlefsen
Martin Jørgensen
Søren Hauberg
    UQCV
ArXivPDFHTML

Papers citing "Reliable training and estimation of variance networks"

30 / 30 papers shown
Title
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties
Jiaxiang Yi
Miguel A. Bessa
UD
PER
UQCV
51
0
0
05 May 2025
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
58
3
0
05 Jun 2024
Robust Estimation of Causal Heteroscedastic Noise Models
Robust Estimation of Causal Heteroscedastic Noise Models
Quang-Duy Tran
Bao Duong
Phuoc Nguyen
Thin Nguyen
29
1
0
15 Dec 2023
Variational Autoencoding of Dental Point Clouds
Variational Autoencoding of Dental Point Clouds
J. Z. Ye
Thomas Orkild
P. Søndergaard
Søren Hauberg
3DPC
28
0
0
20 Jul 2023
Integrating Uncertainty into Neural Network-based Speech Enhancement
Integrating Uncertainty into Neural Network-based Speech Enhancement
Hu Fang
Dennis Becker
S. Wermter
Timo Gerkmann
UQCV
34
2
0
15 May 2023
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
  Satellite Time Series
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical Satellite Time Series
Patrick Ebel
Vivien Sainte Fare Garnot
M. Schmitt
Jan Dirk Wegner
Xiao Xiang Zhu
31
32
0
11 Apr 2023
Improving Uncertainty Quantification of Variance Networks by
  Tree-Structured Learning
Improving Uncertainty Quantification of Variance Networks by Tree-Structured Learning
Wenxuan Ma
Xing Yan
Kun Zhang
UQCV
33
0
0
24 Dec 2022
Faithful Heteroscedastic Regression with Neural Networks
Faithful Heteroscedastic Regression with Neural Networks
Andrew Stirn
H. Wessels
Megan D. Schertzer
L. Pereira
Neville E. Sanjana
David A. Knowles
UQCV
30
14
0
18 Dec 2022
Estimating Regression Predictive Distributions with Sample Networks
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDL
UQCV
30
4
0
24 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
23
52
0
11 Nov 2022
A view on model misspecification in uncertainty quantification
A view on model misspecification in uncertainty quantification
Yuko Kato
David Tax
Marco Loog
30
3
0
30 Oct 2022
Structured Uncertainty in the Observation Space of Variational
  Autoencoders
Structured Uncertainty in the Observation Space of Variational Autoencoders
James A. G. Langley
M. Monteiro
Charles Jones
Nick Pawlowski
Ben Glocker
CML
OOD
BDL
DRL
39
2
0
25 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
Object Detection as Probabilistic Set Prediction
Object Detection as Probabilistic Set Prediction
Georg Hess
Christoffer Petersson
Lennart Svensson
19
5
0
15 Mar 2022
Accurate Prediction and Uncertainty Estimation using Decoupled
  Prediction Interval Networks
Accurate Prediction and Uncertainty Estimation using Decoupled Prediction Interval Networks
Kinjal Patel
Steven Waslander
UQCV
25
3
0
19 Feb 2022
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
  Supervised Lesion Detection
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and Supervised Lesion Detection
H. Akrami
Anand A. Joshi
Sergul Aydore
Richard M. Leahy
UQCV
39
4
0
20 Sep 2021
Calibrated Uncertainty for Molecular Property Prediction using Ensembles
  of Message Passing Neural Networks
Calibrated Uncertainty for Molecular Property Prediction using Ensembles of Message Passing Neural Networks
Jonas Busk
Peter Bjørn Jørgensen
Arghya Bhowmik
Mikkel N. Schmidt
Ole Winther
Tejs Vegge
36
49
0
13 Jul 2021
Energy-Based Generative Cooperative Saliency Prediction
Energy-Based Generative Cooperative Saliency Prediction
Jing Zhang
Jianwen Xie
Zilong Zheng
Nick Barnes
36
12
0
25 Jun 2021
Pulling back information geometry
Pulling back information geometry
Georgios Arvanitidis
Miguel González Duque
Alison Pouplin
Dimitris Kalatzis
Søren Hauberg
DRL
30
14
0
09 Jun 2021
Exploring Uncertainty in Deep Learning for Construction of Prediction
  Intervals
Exploring Uncertainty in Deep Learning for Construction of Prediction Intervals
Yuandu Lai
Yucheng Shi
Yahong Han
Yunfeng Shao
Meiyu Qi
Bingshuai Li
UQCV
41
15
0
27 Apr 2021
Data-Driven Protection Levels for Camera and 3D Map-based Safe Urban
  Localization
Data-Driven Protection Levels for Camera and 3D Map-based Safe Urban Localization
Shubh Gupta
Grace Gao
27
5
0
16 Jan 2021
Geometrically Enriched Latent Spaces
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
19
51
0
02 Aug 2020
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
  Variance Parameterization
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
23
10
0
08 Jun 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
30
16
0
12 Feb 2020
Only Bayes should learn a manifold (on the estimation of differential
  geometric structure from data)
Only Bayes should learn a manifold (on the estimation of differential geometric structure from data)
Søren Hauberg
19
31
0
13 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,695
0
05 Dec 2016
EFANNA : An Extremely Fast Approximate Nearest Neighbor Search Algorithm
  Based on kNN Graph
EFANNA : An Extremely Fast Approximate Nearest Neighbor Search Algorithm Based on kNN Graph
Cong Fu
Deng Cai
43
109
0
23 Sep 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,640
0
03 Jul 2012
1