Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.00232
Cited By
Kernel Instrumental Variable Regression
1 June 2019
Rahul Singh
M. Sahani
Arthur Gretton
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Kernel Instrumental Variable Regression"
50 / 110 papers shown
Title
Confounder Balancing for Instrumental Variable Regression with Latent Variable
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Bo Li
Fei Wu
CML
40
0
0
18 Nov 2022
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Diego Martinez-Taboada
Dino Sejdinovic
CML
OffRL
23
0
0
02 Nov 2022
Nonlinear Causal Discovery via Kernel Anchor Regression
Wenqi Shi
Wenkai Xu
CML
BDL
27
0
0
30 Oct 2022
Spectral Representation Learning for Conditional Moment Models
Ziyu Wang
Yucen Luo
Yueru Li
Jun Zhu
Bernhard Schölkopf
CML
36
7
0
29 Oct 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
26
12
0
28 Sep 2022
Dual Instrumental Method for Confounded Kernelized Bandits
Xueping Gong
Jiheng Zhang
14
1
0
07 Sep 2022
Learning Instrumental Variable from Data Fusion for Treatment Effect Estimation
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Minqing Zhu
Yuxuan Liu
Bo Li
Furui Liu
Zhihua Wang
Fei Wu
CML
33
7
0
23 Aug 2022
Data-Driven Causal Effect Estimation Based on Graphical Causal Modelling: A Survey
Debo Cheng
Jiuyong Li
Lin Liu
Jixue Liu
T. Le
CML
41
29
0
20 Aug 2022
Estimating individual treatment effects under unobserved confounding using binary instruments
Dennis Frauen
Stefan Feuerriegel
CML
23
18
0
17 Aug 2022
Inference on Strongly Identified Functionals of Weakly Identified Functions
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
38
15
0
17 Aug 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
30
47
0
02 Aug 2022
Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach
Yuchen Zhu
Limor Gultchin
Arthur Gretton
Matt J. Kusner
Ricardo M. A. Silva
CML
13
15
0
18 Jun 2022
Constructing unbiased gradient estimators with finite variance for conditional stochastic optimization
T. Goda
Wataru Kitade
8
3
0
04 Jun 2022
Indirect Active Learning
Shashank Singh
18
0
0
03 Jun 2022
Fast Instrument Learning with Faster Rates
Ziyu Wang
Yuhao Zhou
Jun Zhu
29
3
0
22 May 2022
Deep Learning Methods for Proximal Inference via Maximum Moment Restriction
Benjamin Kompa
David R. Bellamy
Thomas Kolokotrones
J. M. Robins
Andrew L. Beam
39
12
0
19 May 2022
Identifiability of Sparse Causal Effects using Instrumental Variables
Niklas Pfister
J. Peters
CML
8
9
0
17 Mar 2022
Stochastic Causal Programming for Bounding Treatment Effects
Kirtan Padh
Jakob Zeitler
David S. Watson
Matt J. Kusner
Ricardo M. A. Silva
Niki Kilbertus
CML
32
26
0
22 Feb 2022
Long-term Causal Inference Under Persistent Confounding via Data Combination
Guido Imbens
Nathan Kallus
Xiaojie Mao
Yuhao Wang
CML
32
44
0
15 Feb 2022
Towards Empirical Process Theory for Vector-Valued Functions: Metric Entropy of Smooth Function Classes
Junhyung Park
Krikamol Muandet
27
6
0
09 Feb 2022
Importance Weighting Approach in Kernel Bayes' Rule
Liyuan Xu
Yutian Chen
Arnaud Doucet
Arthur Gretton
12
1
0
05 Feb 2022
Exploiting Independent Instruments: Identification and Distribution Generalization
Sorawit Saengkyongam
Leonard Henckel
Niklas Pfister
J. Peters
16
18
0
03 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
26
29
0
02 Feb 2022
Generalized Kernel Ridge Regression for Causal Inference with Missing-at-Random Sample Selection
Rahul Singh
26
1
0
09 Nov 2021
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Rahul Singh
Liyuan Xu
Arthur Gretton
32
3
0
06 Nov 2021
Instrumental Variable-Driven Domain Generalization with Unobserved Confounders
Junkun Yuan
Xu Ma
Ruoxuan Xiong
Biwei Huang
Xiangyu Liu
Fei Wu
Lanfen Lin
Kun Kuang
OOD
CML
20
12
0
04 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
30
3
0
30 Sep 2021
Kernel PCA with the Nyström method
Fredrik Hallgren
18
1
0
12 Sep 2021
Learning Causal Models from Conditional Moment Restrictions by Importance Weighting
Masahiro Kato
Masaaki Imaizumi
K. McAlinn
Haruo Kakehi
Shota Yasui
CML
47
5
0
03 Aug 2021
Auto IV: Counterfactual Prediction via Automatic Instrumental Variable Decomposition
Junkun Yuan
Anpeng Wu
Kun Kuang
Yangqiu Song
Runze Wu
Fei Wu
Lanfen Lin
CML
47
38
0
13 Jul 2021
Quasi-Bayesian Dual Instrumental Variable Regression
Ziyun Wang
Yuhao Zhou
Tongzheng Ren
Jun Zhu
22
2
0
16 Jun 2021
Operationalizing Complex Causes: A Pragmatic View of Mediation
Limor Gultchin
David S. Watson
Matt J. Kusner
Ricardo M. A. Silva
CML
17
5
0
09 Jun 2021
Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation
Liyuan Xu
Heishiro Kanagawa
Arthur Gretton
CML
23
35
0
07 Jun 2021
BayesIMP: Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau
Jean-François Ton
Javier I. González
Yee Whye Teh
Dino Sejdinovic
CML
14
18
0
07 Jun 2021
Instrument Space Selection for Kernel Maximum Moment Restriction
Rui Zhang
Krikamol Muandet
Bernhard Schölkopf
Masaaki Imaizumi
30
3
0
07 Jun 2021
Causal Effect Inference for Structured Treatments
Jean Kaddour
Yuchen Zhu
Qi Liu
Matt J. Kusner
Ricardo M. A. Silva
CML
182
50
0
03 Jun 2021
A Simple and General Debiased Machine Learning Theorem with Finite Sample Guarantees
Victor Chernozhukov
Whitney Newey
Rahul Singh
FedML
20
24
0
31 May 2021
Deconditional Downscaling with Gaussian Processes
Siu Lun Chau
S. Bouabid
Dino Sejdinovic
BDL
16
21
0
27 May 2021
On Instrumental Variable Regression for Deep Offline Policy Evaluation
Yutian Chen
Liyuan Xu
Çağlar Gülçehre
T. Paine
Arthur Gretton
Nando de Freitas
Arnaud Doucet
OffRL
51
18
0
21 May 2021
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction
Afsaneh Mastouri
Yuchen Zhu
Limor Gultchin
Anna Korba
Ricardo M. A. Silva
Matt J. Kusner
Arthur Gretton
Krikamol Muandet
CML
19
59
0
10 May 2021
Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference
AmirEmad Ghassami
Andrew Ying
I. Shpitser
E. T. Tchetgen
21
43
0
07 Apr 2021
Causal Inference Under Unmeasured Confounding With Negative Controls: A Minimax Learning Approach
Nathan Kallus
Xiaojie Mao
Masatoshi Uehara
CML
27
66
0
25 Mar 2021
Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning
Luofeng Liao
Zuyue Fu
Zhuoran Yang
Yixin Wang
Mladen Kolar
Zhaoran Wang
OffRL
18
34
0
19 Feb 2021
Causal Gradient Boosting: Boosted Instrumental Variable Regression
Edvard Bakhitov
Amandeep Singh
9
12
0
15 Jan 2021
Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments
Rahul Singh
CML
31
39
0
18 Dec 2020
Regularised Least-Squares Regression with Infinite-Dimensional Output Space
Junhyunng Park
Krikamol Muandet
11
8
0
21 Oct 2020
Instrumental Variable Regression via Kernel Maximum Moment Loss
Rui Zhang
Masaaki Imaizumi
Bernhard Schölkopf
Krikamol Muandet
6
7
0
15 Oct 2020
Learning Deep Features in Instrumental Variable Regression
Liyuan Xu
Yutian Chen
Siddarth Srinivasan
Nando de Freitas
Arnaud Doucet
Arthur Gretton
CML
OOD
28
68
0
14 Oct 2020
Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves
Rahul Singh
Liyuan Xu
Arthur Gretton
OffRL
63
27
0
10 Oct 2020
Provably Efficient Neural Estimation of Structural Equation Model: An Adversarial Approach
Luofeng Liao
You-Lin Chen
Zhuoran Yang
Bo Dai
Zhaoran Wang
Mladen Kolar
30
33
0
02 Jul 2020
Previous
1
2
3
Next