ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.15197
20
24

A Simple and General Debiased Machine Learning Theorem with Finite Sample Guarantees

31 May 2021
Victor Chernozhukov
Whitney Newey
Rahul Singh
    FedML
ArXivPDFHTML
Abstract

Debiased machine learning is a meta algorithm based on bias correction and sample splitting to calculate confidence intervals for functionals, i.e. scalar summaries, of machine learning algorithms. For example, an analyst may desire the confidence interval for a treatment effect estimated with a neural network. We provide a nonasymptotic debiased machine learning theorem that encompasses any global or local functional of any machine learning algorithm that satisfies a few simple, interpretable conditions. Formally, we prove consistency, Gaussian approximation, and semiparametric efficiency by finite sample arguments. The rate of convergence is n−1/2n^{-1/2}n−1/2 for global functionals, and it degrades gracefully for local functionals. Our results culminate in a simple set of conditions that an analyst can use to translate modern learning theory rates into traditional statistical inference. The conditions reveal a general double robustness property for ill posed inverse problems.

View on arXiv
Comments on this paper