44
8

Regularised Least-Squares Regression with Infinite-Dimensional Output Space

Abstract

This short technical report presents some learning theory results on vector-valued reproducing kernel Hilbert space (RKHS) regression, where the input space is allowed to be non-compact and the output space is a (possibly infinite-dimensional) Hilbert space. Our approach is based on the integral operator technique using spectral theory for non-compact operators. We place a particular emphasis on obtaining results with as few assumptions as possible; as such we only use Chebyshev's inequality, and no effort is made to obtain the best rates or constants.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.