ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08750
22
2

Quasi-Bayesian Dual Instrumental Variable Regression

16 June 2021
Ziyun Wang
Yuhao Zhou
Tongzheng Ren
Jun Zhu
ArXivPDFHTML
Abstract

Recent years have witnessed an upsurge of interest in employing flexible machine learning models for instrumental variable (IV) regression, but the development of uncertainty quantification methodology is still lacking. In this work we present a novel quasi-Bayesian procedure for IV regression, building upon the recently developed kernelized IV models and the dual/minimax formulation of IV regression. We analyze the frequentist behavior of the proposed method, by establishing minimax optimal contraction rates in L2L_2L2​ and Sobolev norms, and discussing the frequentist validity of credible balls. We further derive a scalable inference algorithm which can be extended to work with wide neural network models. Empirical evaluation shows that our method produces informative uncertainty estimates on complex high-dimensional problems.

View on arXiv
Comments on this paper