Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.07488
Cited By
Automatic Posterior Transformation for Likelihood-Free Inference
17 May 2019
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Automatic Posterior Transformation for Likelihood-Free Inference"
36 / 36 papers shown
Title
Multifidelity Simulation-based Inference for Computationally Expensive Simulators
Anastasia N. Krouglova
Hayden R. Johnson
Basile Confavreux
Michael Deistler
P. J. Gonçalves
214
3
0
17 Feb 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
240
2
0
17 Jan 2025
TRADE: Transfer of Distributions between External Conditions with Normalizing Flows
Stefan Wahl
Armand Rousselot
Felix Dräxler
Ullrich Kothe
Ullrich Köthe
160
0
0
25 Oct 2024
Inverse decision-making using neural amortized Bayesian actors
Dominik Straub
Tobias F. Niehues
Jan Peters
Constantin Rothkopf
172
1
0
04 Sep 2024
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
206
4
0
23 Aug 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
199
0
0
22 Jul 2024
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
633
15
0
04 Oct 2023
Recurrent machines for likelihood-free inference
Arthur Pesah
Antoine Wehenkel
Gilles Louppe
117
5
0
30 Nov 2018
Sequential Neural Methods for Likelihood-free Inference
Conor Durkan
George Papamakarios
Iain Murray
BDL
169
25
0
21 Nov 2018
Dynamic Likelihood-free Inference via Ratio Estimation (DIRE)
Traiko Dinev
Michael U. Gutmann
141
27
0
23 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
295
3,134
0
09 Jul 2018
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
157
181
0
30 May 2018
Likelihood-free inference with emulator networks
Jan-Matthis Lueckmann
Giacomo Bassetto
Theofanis Karaletsos
Jakob H. Macke
163
128
0
23 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
533
367
0
18 May 2018
A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks
Jeffrey Chan
Valerio Perrone
J. Spence
Paul A. Jenkins
Sara Mathieson
Yun S. Song
317
107
0
16 Feb 2018
Variational Inference over Non-differentiable Cardiac Simulators using Bayesian Optimization
Adam McCarthy
Blanca Rodriguez
A. Mincholé
154
5
0
09 Dec 2017
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
174
245
0
06 Nov 2017
Adversarial Variational Optimization of Non-Differentiable Simulators
Gilles Louppe
Joeri Hermans
Kyle Cranmer
GAN
153
66
0
22 Jul 2017
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
210
1,354
0
19 May 2017
Efficient acquisition rules for model-based approximate Bayesian computation
Marko Jarvenpaa
Michael U. Gutmann
Arijus Pleska
Aki Vehtari
Pekka Marttinen
TPM
160
69
0
03 Apr 2017
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
408
2,464
0
10 Mar 2017
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
T. Le
A. G. Baydin
R. Zinkov
Frank Wood
SyDa
OOD
148
88
0
02 Mar 2017
Variational Inference using Implicit Distributions
Ferenc Huszár
DRL
GAN
160
135
0
27 Feb 2017
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
190
151
0
30 Nov 2016
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
190
416
0
11 Oct 2016
Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network
Bai Jiang
Tung-Yu Wu
Charles Yang Zheng
W. Wong
BDL
305
142
0
08 Oct 2015
Approximating Likelihood Ratios with Calibrated Discriminative Classifiers
Kyle Cranmer
J. Pavez
Gilles Louppe
127
227
0
06 Jun 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
318
4,182
0
21 May 2015
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
Michael U. Gutmann
J. Corander
157
287
0
14 Jan 2015
Likelihood free inference for Markov processes: a comparison
J. Owen
D. Wilkinson
Colin S. Gillespie
199
33
0
02 Oct 2014
Likelihood-free inference via classification
Michael U. Gutmann
Ritabrata Dutta
Samuel Kaski
J. Corander
174
63
0
18 Jul 2014
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.0K
23,354
0
03 Jun 2014
Approximate Bayesian Computation via Regression Density Estimation
Yanan Fan
David J. Nott
Scott A. Sisson
165
62
0
06 Dec 2012
A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation
M. Blum
M. Nunes
D. Prangle
Scott A. Sisson
183
364
0
16 Feb 2012
Non-linear regression models for Approximate Bayesian Computation
M. Blum
O. François
215
484
0
24 Sep 2008
Adaptive approximate Bayesian computation
Mark Beaumont
J. Cornuet
Jean-Michel Marin
Christian P. Robert
185
644
0
15 May 2008
1