ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07088
  4. Cited By
Sliced Score Matching: A Scalable Approach to Density and Score
  Estimation

Sliced Score Matching: A Scalable Approach to Density and Score Estimation

17 May 2019
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
ArXivPDFHTML

Papers citing "Sliced Score Matching: A Scalable Approach to Density and Score Estimation"

45 / 295 papers shown
Title
Estimating High Order Gradients of the Data Distribution by Denoising
Estimating High Order Gradients of the Data Distribution by Denoising
Chenlin Meng
Yang Song
Wenzhe Li
Stefano Ermon
DiffM
8
44
0
08 Nov 2021
Pseudo-Spherical Contrastive Divergence
Pseudo-Spherical Contrastive Divergence
Lantao Yu
Jiaming Song
Yang Song
Stefano Ermon
23
7
0
01 Nov 2021
Score-based diffusion models for accelerated MRI
Score-based diffusion models for accelerated MRI
Hyungjin Chung
Jong Chul Ye
DiffM
MedIm
37
399
0
08 Oct 2021
Smooth Normalizing Flows
Smooth Normalizing Flows
Jonas Köhler
Andreas Krämer
Frank Noé
24
53
0
01 Oct 2021
Interpreting diffusion score matching using normalizing flow
Interpreting diffusion score matching using normalizing flow
Wenbo Gong
Yingzhen Li
DiffM
19
13
0
21 Jul 2021
On Out-of-distribution Detection with Energy-based Models
On Out-of-distribution Detection with Energy-based Models
Sven Elflein
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
OODD
14
18
0
03 Jul 2021
Conjugate Energy-Based Models
Conjugate Energy-Based Models
Hao Wu
Babak Esmaeili
Michael L. Wick
Jean-Baptiste Tristan
Jan Willem van de Meent
16
2
0
25 Jun 2021
ScoreGrad: Multivariate Probabilistic Time Series Forecasting with
  Continuous Energy-based Generative Models
ScoreGrad: Multivariate Probabilistic Time Series Forecasting with Continuous Energy-based Generative Models
Tijin Yan
Hongwei Zhang
Tong Zhou
Yufeng Zhan
Yuanqing Xia
DiffM
AI4TS
28
38
0
18 Jun 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
11
657
0
10 Jun 2021
Learning to Efficiently Sample from Diffusion Probabilistic Models
Learning to Efficiently Sample from Diffusion Probabilistic Models
Daniel Watson
Jonathan Ho
Mohammad Norouzi
William Chan
DiffM
37
134
0
07 Jun 2021
Meta-Learning Reliable Priors in the Function Space
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
19
27
0
06 Jun 2021
A Variational Perspective on Diffusion-Based Generative Models and Score
  Matching
A Variational Perspective on Diffusion-Based Generative Models and Score Matching
Chin-Wei Huang
Jae Hyun Lim
Aaron Courville
DiffM
30
186
0
05 Jun 2021
Ab-initio study of interacting fermions at finite temperature with
  neural canonical transformation
Ab-initio study of interacting fermions at finite temperature with neural canonical transformation
Hao Xie
Linfeng Zhang
Lei Wang
14
26
0
18 May 2021
EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
  Models
EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based Models
Jiaxiang Wu
Shitong Luo
Tao Shen
Haidong Lan
Sheng Wang
Junzhou Huang
DiffM
24
8
0
11 May 2021
Learning Gradient Fields for Molecular Conformation Generation
Learning Gradient Fields for Molecular Conformation Generation
Chence Shi
Shitong Luo
Minkai Xu
Jian Tang
DiffM
AI4CE
31
210
0
09 May 2021
Review of end-to-end speech synthesis technology based on deep learning
Review of end-to-end speech synthesis technology based on deep learning
Zhaoxi Mu
Xinyu Yang
Yizhuo Dong
AuLLM
ALM
13
24
0
20 Apr 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
478
0
08 Mar 2021
Active Slices for Sliced Stein Discrepancy
Active Slices for Sliced Stein Discrepancy
Wenbo Gong
Kaibo Zhang
Yingzhen Li
José Miguel Hernández-Lobato
17
8
0
05 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
62
621
0
22 Jan 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
12
241
0
09 Jan 2021
Score Matched Neural Exponential Families for Likelihood-Free Inference
Score Matched Neural Exponential Families for Likelihood-Free Inference
Lorenzo Pacchiardi
Ritabrata Dutta
19
27
0
20 Dec 2020
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
8
6,045
0
26 Nov 2020
Autoregressive Score Matching
Autoregressive Score Matching
Chenlin Meng
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
DiffM
180
12
0
24 Oct 2020
Imitation with Neural Density Models
Imitation with Neural Density Models
Kuno Kim
Akshat Jindal
Yang Song
Jiaming Song
Yanan Sui
Stefano Ermon
34
11
0
19 Oct 2020
Variational (Gradient) Estimate of the Score Function in Energy-based
  Latent Variable Models
Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models
Fan Bao
Kun Xu
Chongxuan Li
Lanqing Hong
Jun Zhu
Bo Zhang
DiffM
8
8
0
16 Oct 2020
Bi-level Score Matching for Learning Energy-based Latent Variable Models
Bi-level Score Matching for Learning Energy-based Latent Variable Models
Fan Bao
Chongxuan Li
Kun Xu
Hang Su
Jun Zhu
Bo Zhang
14
13
0
15 Oct 2020
No MCMC for me: Amortized sampling for fast and stable training of
  energy-based models
No MCMC for me: Amortized sampling for fast and stable training of energy-based models
Will Grathwohl
Jacob Kelly
Milad Hashemi
Mohammad Norouzi
Kevin Swersky
D. Duvenaud
6
70
0
08 Oct 2020
Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of
  Generative Model
Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of Generative Model
Zhuonan He
Yikun Zhang
Yu Guan
S. Niu
Yi Zhang
Yang Chen
Qiegen Liu
DiffM
MedIm
25
12
0
27 Sep 2020
WaveGrad: Estimating Gradients for Waveform Generation
WaveGrad: Estimating Gradients for Waveform Generation
Nanxin Chen
Yu Zhang
Heiga Zen
Ron J. Weiss
Mohammad Norouzi
William Chan
DiffM
BDL
14
769
0
02 Sep 2020
Learning Gradient Fields for Shape Generation
Learning Gradient Fields for Shape Generation
Ruojin Cai
Guandao Yang
Hadar Averbuch-Elor
Zekun Hao
Serge J. Belongie
Noah Snavely
B. Hariharan
3DPC
8
280
0
14 Aug 2020
Efficient Learning of Generative Models via Finite-Difference Score
  Matching
Efficient Learning of Generative Models via Finite-Difference Score Matching
Tianyu Pang
Kun Xu
Chongxuan Li
Yang Song
Stefano Ermon
Jun Zhu
DiffM
22
53
0
07 Jul 2020
Kernel Stein Generative Modeling
Kernel Stein Generative Modeling
Wei-Cheng Chang
Chun-Liang Li
Youssef Mroueh
Yiming Yang
DiffM
BDL
33
5
0
06 Jul 2020
Sliced Kernelized Stein Discrepancy
Sliced Kernelized Stein Discrepancy
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
12
37
0
30 Jun 2020
Rethinking the Role of Gradient-Based Attribution Methods for Model
  Interpretability
Rethinking the Role of Gradient-Based Attribution Methods for Model Interpretability
Suraj Srinivas
F. Fleuret
FAtt
8
1
0
16 Jun 2020
Improved Techniques for Training Score-Based Generative Models
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
26
1,113
0
16 Jun 2020
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation
Jae Hyun Lim
Aaron Courville
C. Pal
Chin-Wei Huang
DRL
6
23
0
09 Jun 2020
Nonparametric Score Estimators
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
22
23
0
20 May 2020
Mutual Information Gradient Estimation for Representation Learning
Mutual Information Gradient Estimation for Representation Learning
Liangjiang Wen
Yiji Zhou
Lirong He
Mingyuan Zhou
Zenglin Xu
DRL
SSL
12
27
0
03 May 2020
Energy-Based Imitation Learning
Energy-Based Imitation Learning
Minghuan Liu
Tairan He
Minkai Xu
Weinan Zhang
9
48
0
20 Apr 2020
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
Ziyu Wang
Shuyu Cheng
Yueru Li
Jun Zhu
Bo Zhang
18
14
0
18 Feb 2020
Learning the Stein Discrepancy for Training and Evaluating Energy-Based
  Models without Sampling
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling
Will Grathwohl
Kuan-Chieh Jackson Wang
J. Jacobsen
D. Duvenaud
R. Zemel
11
14
0
13 Feb 2020
Learning Generative Models using Denoising Density Estimators
Learning Generative Models using Denoising Density Estimators
Siavash Bigdeli
Geng Lin
Tiziano Portenier
L. A. Dunbar
Matthias Zwicker
DiffM
26
15
0
08 Jan 2020
Learning Energy-Based Models in High-Dimensional Spaces with Multi-scale
  Denoising Score Matching
Learning Energy-Based Models in High-Dimensional Spaces with Multi-scale Denoising Score Matching
Zengyi Li
Yubei Chen
Friedrich T. Sommer
DiffM
11
26
0
17 Oct 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
20
3,698
0
12 Jul 2019
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
Previous
123456