Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.02175
Cited By
Adversarial Examples Are Not Bugs, They Are Features
6 May 2019
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
A. Madry
SILM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples Are Not Bugs, They Are Features"
50 / 373 papers shown
Title
Data-driven Identification of 2D Partial Differential Equations using extracted physical features
Kazem Meidani
A. Farimani
21
17
0
20 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
31
48
0
19 Oct 2020
GreedyFool: Multi-Factor Imperceptibility and Its Application to Designing a Black-box Adversarial Attack
Hui Liu
Bo Zhao
Minzhi Ji
Peng Liu
AAML
29
6
0
14 Oct 2020
A Unified Approach to Interpreting and Boosting Adversarial Transferability
Xin Eric Wang
Jie Ren
Shuyu Lin
Xiangming Zhu
Yisen Wang
Quanshi Zhang
AAML
29
94
0
08 Oct 2020
Generating End-to-End Adversarial Examples for Malware Classifiers Using Explainability
Ishai Rosenberg
Shai Meir
J. Berrebi
I. Gordon
Guillaume Sicard
Eli David
AAML
SILM
11
25
0
28 Sep 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
29
11
0
21 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
43
62
0
11 Sep 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
157
0
08 Sep 2020
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
81
60
0
05 Sep 2020
A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning
Martin Mundt
Yongjun Hong
Iuliia Pliushch
Visvanathan Ramesh
CLL
30
146
0
03 Sep 2020
Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
24
19
0
19 Aug 2020
Optimizing Information Loss Towards Robust Neural Networks
Philip Sperl
Konstantin Böttinger
AAML
21
3
0
07 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
29
73
0
07 Aug 2020
Assessing the (Un)Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging
N. Arun
N. Gaw
P. Singh
Ken Chang
M. Aggarwal
...
J. Patel
M. Gidwani
Julius Adebayo
M. D. Li
Jayashree Kalpathy-Cramer
FAtt
30
109
0
06 Aug 2020
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
34
65
0
04 Aug 2020
Robust and Generalizable Visual Representation Learning via Random Convolutions
Zhenlin Xu
Deyi Liu
Junlin Yang
Colin Raffel
Marc Niethammer
OOD
AAML
53
191
0
25 Jul 2020
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
24
23
0
22 Jul 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
A. Madry
37
417
0
16 Jul 2020
Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations
Chaoning Zhang
Philipp Benz
Tooba Imtiaz
In-So Kweon
SSL
AAML
22
118
0
13 Jul 2020
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
18
37
0
09 Jul 2020
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency
Robert Geirhos
Kristof Meding
Felix Wichmann
19
117
0
30 Jun 2020
Overcoming Statistical Shortcuts for Open-ended Visual Counting
Corentin Dancette
Rémi Cadène
Xinlei Chen
Matthieu Cord
13
3
0
17 Jun 2020
Self-training Avoids Using Spurious Features Under Domain Shift
Yining Chen
Colin Wei
Ananya Kumar
Tengyu Ma
OOD
29
85
0
17 Jun 2020
Noise or Signal: The Role of Image Backgrounds in Object Recognition
Kai Y. Xiao
Logan Engstrom
Andrew Ilyas
A. Madry
25
377
0
17 Jun 2020
Adversarial Self-Supervised Contrastive Learning
Minseon Kim
Jihoon Tack
Sung Ju Hwang
SSL
28
247
0
13 Jun 2020
Calibrated neighborhood aware confidence measure for deep metric learning
Maryna Karpusha
Sunghee Yun
István Fehérvári
UQCV
FedML
27
2
0
08 Jun 2020
A Self-supervised Approach for Adversarial Robustness
Muzammal Naseer
Salman Khan
Munawar Hayat
Fahad Shahbaz Khan
Fatih Porikli
AAML
22
251
0
08 Jun 2020
An Adversarial Approach for Explaining the Predictions of Deep Neural Networks
Arash Rahnama
A.-Yu Tseng
FAtt
AAML
FaML
19
5
0
20 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
39
147
0
20 May 2020
Blind Backdoors in Deep Learning Models
Eugene Bagdasaryan
Vitaly Shmatikov
AAML
FedML
SILM
46
298
0
08 May 2020
Towards Frequency-Based Explanation for Robust CNN
Zifan Wang
Yilin Yang
Ankit Shrivastava
Varun Rawal
Zihao Ding
AAML
FAtt
21
47
0
06 May 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
31
8
0
23 Apr 2020
Provably robust deep generative models
Filipe Condessa
Zico Kolter
AAML
OOD
11
5
0
22 Apr 2020
Dynamic Knowledge Graph-based Dialogue Generation with Improved Adversarial Meta-Learning
Hongcai Xu
J. Bao
Gaojie Zhang
27
8
0
19 Apr 2020
M2m: Imbalanced Classification via Major-to-minor Translation
Jaehyung Kim
Jongheon Jeong
Jinwoo Shin
17
220
0
01 Apr 2020
Going in circles is the way forward: the role of recurrence in visual inference
R. S. V. Bergen
N. Kriegeskorte
17
82
0
26 Mar 2020
ARAE: Adversarially Robust Training of Autoencoders Improves Novelty Detection
Mohammadreza Salehi
Atrin Arya
Barbod Pajoum
Mohammad Otoofi
Amirreza Shaeiri
M. Rohban
Hamid R. Rabiee
AAML
29
62
0
12 Mar 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
163
113
0
05 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
907
0
02 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
33
397
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
37
69
0
25 Feb 2020
Gödel's Sentence Is An Adversarial Example But Unsolvable
Xiaodong Qi
Lansheng Han
AAML
30
0
0
25 Feb 2020
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
19
28
0
13 Feb 2020
The Conditional Entropy Bottleneck
Ian S. Fischer
OOD
29
116
0
13 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
38
64
0
11 Feb 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
24
108
0
27 Dec 2019
Label-Consistent Backdoor Attacks
Alexander Turner
Dimitris Tsipras
A. Madry
AAML
11
383
0
05 Dec 2019
AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds
Abdullah Hamdi
Sara Rojas
Ali K. Thabet
Guohao Li
AAML
3DPC
33
127
0
01 Dec 2019
Universal adversarial examples in speech command classification
Jon Vadillo
Roberto Santana
AAML
34
29
0
22 Nov 2019
Defective Convolutional Networks
Tiange Luo
Tianle Cai
Mengxiao Zhang
Siyu Chen
Di He
Liwei Wang
AAML
30
3
0
19 Nov 2019
Previous
1
2
3
4
5
6
7
8
Next