Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.02175
Cited By
Adversarial Examples Are Not Bugs, They Are Features
6 May 2019
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
A. Madry
SILM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples Are Not Bugs, They Are Features"
50 / 372 papers shown
Title
Practical Galaxy Morphology Tools from Deep Supervised Representation Learning
Mike Walmsley
Anna M. M. Scaife
Chris J. Lintott
Michelle Lochner
Yu Zhu
...
Xibo Ma
Sandor Kruk
Zhen Lei
G. Guo
B. Simmons
24
29
0
25 Oct 2021
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
193
879
0
21 Oct 2021
RoMA: a Method for Neural Network Robustness Measurement and Assessment
Natan Levy
Guy Katz
OOD
AAML
12
13
0
21 Oct 2021
No One Representation to Rule Them All: Overlapping Features of Training Methods
Raphael Gontijo-Lopes
Yann N. Dauphin
E. D. Cubuk
32
60
0
20 Oct 2021
Combining Diverse Feature Priors
Saachi Jain
Dimitris Tsipras
A. Madry
69
14
0
15 Oct 2021
Amicable examples for informed source separation
Naoya Takahashi
Yuki Mitsufuji
AAML
33
1
0
11 Oct 2021
Source Mixing and Separation Robust Audio Steganography
Naoya Takahashi
M. Singh
Yuki Mitsufuji
34
6
0
11 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
66
18
0
07 Oct 2021
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs
Philipp Benz
Soomin Ham
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
ViT
47
79
0
06 Oct 2021
Adversarial defenses via a mixture of generators
Maciej Żelaszczyk
Jacek Mańdziuk
AAML
13
0
0
05 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
36
1
0
27 Sep 2021
Modeling Adversarial Noise for Adversarial Training
Dawei Zhou
Nannan Wang
Bo Han
Tongliang Liu
AAML
38
15
0
21 Sep 2021
The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
Alexander Bastounis
A. Hansen
Verner Vlacic
AAML
OOD
32
28
0
13 Sep 2021
Training Meta-Surrogate Model for Transferable Adversarial Attack
Yunxiao Qin
Yuanhao Xiong
Jinfeng Yi
Cho-Jui Hsieh
AAML
20
18
0
05 Sep 2021
Adversarial Robustness for Unsupervised Domain Adaptation
Muhammad Awais
Fengwei Zhou
Hang Xu
Lanqing Hong
Ping Luo
Sung-Ho Bae
Zhenguo Li
20
39
0
02 Sep 2021
Impact of Attention on Adversarial Robustness of Image Classification Models
Prachi Agrawal
Narinder Singh Punn
S. K. Sonbhadra
Sonali Agarwal
AAML
24
6
0
02 Sep 2021
How Does Adversarial Fine-Tuning Benefit BERT?
J. Ebrahimi
Hao Yang
Wei Zhang
AAML
26
4
0
31 Aug 2021
Disrupting Adversarial Transferability in Deep Neural Networks
Christopher Wiedeman
Ge Wang
AAML
36
8
0
27 Aug 2021
AdvDrop: Adversarial Attack to DNNs by Dropping Information
Ranjie Duan
YueFeng Chen
Dantong Niu
Yun Yang
•. A. K. Qin
Yuan He
AAML
24
89
0
20 Aug 2021
Causal Attention for Unbiased Visual Recognition
Tan Wang
Chan Zhou
Qianru Sun
Hanwang Zhang
OOD
CML
34
109
0
19 Aug 2021
Exploiting Features with Split-and-Share Module
Jaemin Lee
Min-seok Seo
Jongchan Park
Dong-Geol Choi
24
0
0
10 Aug 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
36
236
0
01 Aug 2021
Who's Afraid of Thomas Bayes?
Erick Galinkin
AAML
28
0
0
30 Jul 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
231
0
27 Jul 2021
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
41
274
0
29 Jun 2021
Can contrastive learning avoid shortcut solutions?
Joshua Robinson
Li Sun
Ke Yu
Kayhan Batmanghelich
Stefanie Jegelka
S. Sra
SSL
19
142
0
21 Jun 2021
Adversarial Examples Make Strong Poisons
Liam H. Fowl
Micah Goldblum
Ping Yeh-Chiang
Jonas Geiping
Wojtek Czaja
Tom Goldstein
SILM
32
132
0
21 Jun 2021
Attack to Fool and Explain Deep Networks
Naveed Akhtar
M. Jalwana
Bennamoun
Ajmal Mian
AAML
27
33
0
20 Jun 2021
Adversarial Visual Robustness by Causal Intervention
Kaihua Tang
Ming Tao
Hanwang Zhang
CML
AAML
27
21
0
17 Jun 2021
Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems
Giovanni Apruzzese
M. Andreolini
Luca Ferretti
Mirco Marchetti
M. Colajanni
AAML
34
105
0
17 Jun 2021
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
31
23
0
12 Jun 2021
Disrupting Model Training with Adversarial Shortcuts
Ivan Evtimov
Ian Covert
Aditya Kusupati
Tadayoshi Kohno
AAML
28
10
0
12 Jun 2021
Reveal of Vision Transformers Robustness against Adversarial Attacks
Ahmed Aldahdooh
W. Hamidouche
Olivier Déforges
ViT
15
57
0
07 Jun 2021
Understanding Neural Code Intelligence Through Program Simplification
Md Rafiqul Islam Rabin
Vincent J. Hellendoorn
Mohammad Amin Alipour
AAML
49
58
0
07 Jun 2021
A Little Robustness Goes a Long Way: Leveraging Robust Features for Targeted Transfer Attacks
Jacob Mitchell Springer
Melanie Mitchell
Garrett Kenyon
AAML
31
43
0
03 Jun 2021
Exposing Previously Undetectable Faults in Deep Neural Networks
Isaac Dunn
Hadrien Pouget
Daniel Kroening
T. Melham
AAML
34
28
0
01 Jun 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
23
9
0
31 May 2021
Goal Misgeneralization in Deep Reinforcement Learning
L. Langosco
Jack Koch
Lee D. Sharkey
J. Pfau
Laurent Orseau
David M. Krueger
30
78
0
28 May 2021
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
60
0
21 May 2021
Real-time Detection of Practical Universal Adversarial Perturbations
Kenneth T. Co
Luis Muñoz-González
Leslie Kanthan
Emil C. Lupu
AAML
33
6
0
16 May 2021
Salient Feature Extractor for Adversarial Defense on Deep Neural Networks
Jinyin Chen
Ruoxi Chen
Haibin Zheng
Zhaoyan Ming
Wenrong Jiang
Chen Cui
AAML
25
10
0
14 May 2021
Leveraging Sparse Linear Layers for Debuggable Deep Networks
Eric Wong
Shibani Santurkar
A. Madry
FAtt
22
88
0
11 May 2021
Poisoning the Unlabeled Dataset of Semi-Supervised Learning
Nicholas Carlini
AAML
164
68
0
04 May 2021
An Overview of Laser Injection against Embedded Neural Network Models
Mathieu Dumont
Pierre-Alain Moëllic
R. Viera
J. Dutertre
Rémi Bernhard
AAML
30
9
0
04 May 2021
Impact of Spatial Frequency Based Constraints on Adversarial Robustness
Rémi Bernhard
Pierre-Alain Moëllic
Martial Mermillod
Yannick Bourrier
Romain Cohendet
M. Solinas
M. Reyboz
AAML
30
17
0
26 Apr 2021
SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics
J. Hayase
Weihao Kong
Raghav Somani
Sewoong Oh
AAML
24
150
0
22 Apr 2021
Understanding and Avoiding AI Failures: A Practical Guide
R. M. Williams
Roman V. Yampolskiy
30
24
0
22 Apr 2021
Beyond Question-Based Biases: Assessing Multimodal Shortcut Learning in Visual Question Answering
Corentin Dancette
Rémi Cadène
Damien Teney
Matthieu Cord
CML
28
76
0
07 Apr 2021
Universal Adversarial Training with Class-Wise Perturbations
Philipp Benz
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
25
26
0
07 Apr 2021
Previous
1
2
3
4
5
6
7
8
Next