Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.09770
Cited By
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
22 April 2019
Erik Nijkamp
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model"
39 / 39 papers shown
Title
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
LSEBMCL: A Latent Space Energy-Based Model for Continual Learning
Xiaodi Li
Dingcheng Li
Rujun Gao
Mahmoud Zamani
Latifur Khan
CLL
KELM
42
0
0
09 Jan 2025
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
33
2
0
13 Oct 2024
EQ-CBM: A Probabilistic Concept Bottleneck with Energy-based Models and Quantized Vectors
Sangwon Kim
Dasom Ahn
B. Ko
In-su Jang
Kwang-Ju Kim
20
4
0
22 Sep 2024
Latent Space Energy-based Neural ODEs
Sheng Cheng
Deqian Kong
Jianwen Xie
Kookjin Lee
Ying Nian Wu
Yezhou Yang
DiffM
111
1
0
05 Sep 2024
Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models
Sangwoong Yoon
Himchan Hwang
Dohyun Kwon
Yung-Kyun Noh
Frank C. Park
22
3
0
30 Jun 2024
Cascade of phase transitions in the training of Energy-based models
Dimitrios Bachtis
Giulio Biroli
A. Decelle
Beatriz Seoane
34
4
0
23 May 2024
Generative modeling through internal high-dimensional chaotic activity
Samantha J. Fournier
Pierfrancesco Urbani
27
1
0
17 May 2024
TEA: Test-time Energy Adaptation
Yige Yuan
Bingbing Xu
Liang Hou
Fei Sun
Huawei Shen
Xueqi Cheng
TTA
VLM
26
7
0
24 Nov 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
13
2
0
01 Jun 2023
Moment Matching Denoising Gibbs Sampling
Mingtian Zhang
Alex Hawkins-Hooker
Brooks Paige
David Barber
DiffM
24
3
0
19 May 2023
Likelihood-Based Generative Radiance Field with Latent Space Energy-Based Model for 3D-Aware Disentangled Image Representation
Y. Zhu
Jianwen Xie
Ping Li
MedIm
20
4
0
16 Apr 2023
Non-Generative Energy Based Models
Jacob Piland
Christopher Sweet
Priscila Saboia
Charles Vardeman
A. Czajka
28
0
0
03 Apr 2023
AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Zhixuan Liang
Yao Mu
Mingyu Ding
Fei Ni
M. Tomizuka
Ping Luo
64
99
0
03 Feb 2023
Explaining the effects of non-convergent sampling in the training of Energy-Based Models
E. Agoritsas
Giovanni Catania
A. Decelle
Beatriz Seoane
DiffM
14
10
0
23 Jan 2023
A Tale of Two Latent Flows: Learning Latent Space Normalizing Flow with Short-run Langevin Flow for Approximate Inference
Jianwen Xie
Y. Zhu
Yifei Xu
Dingcheng Li
Ping Li
BDL
DRL
12
7
0
23 Jan 2023
GEDI: GEnerative and DIscriminative Training for Self-Supervised Learning
Emanuele Sansone
Robin Manhaeve
SSL
15
9
0
27 Dec 2022
Robust Graph Representation Learning via Predictive Coding
Billy Byiringiro
Tommaso Salvatori
Thomas Lukasiewicz
OOD
23
6
0
09 Dec 2022
Is Conditional Generative Modeling all you need for Decision-Making?
Anurag Ajay
Yilun Du
Abhi Gupta
J. Tenenbaum
Tommi Jaakkola
Pulkit Agrawal
DiffM
39
359
0
28 Nov 2022
A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model
Jianwen Xie
Y. Zhu
J. Li
Ping Li
16
50
0
13 May 2022
Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction
Jing Zhang
Jianwen Xie
Nick Barnes
Ping Li
ViT
35
90
0
27 Dec 2021
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
13
101
0
30 Nov 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
28
13
0
03 Nov 2021
Unsupervised Foreground Extraction via Deep Region Competition
Peiyu Yu
Sirui Xie
Xiaojian Ma
Yixin Zhu
Ying Nian Wu
Song-Chun Zhu
OCL
24
42
0
29 Oct 2021
LEO: Learning Energy-based Models in Factor Graph Optimization
Paloma Sodhi
Eric Dexheimer
Mustafa Mukadam
Stuart Anderson
Michael Kaess
32
16
0
04 Aug 2021
Directly Training Joint Energy-Based Models for Conditional Synthesis and Calibrated Prediction of Multi-Attribute Data
Jacob Kelly
R. Zemel
Will Grathwohl
31
2
0
19 Jul 2021
Autoencoding Under Normalization Constraints
Sangwoong Yoon
Yung-Kyun Noh
Frank C. Park
OODD
UQCV
25
38
0
12 May 2021
3D Shape Generation and Completion through Point-Voxel Diffusion
Linqi Zhou
Yilun Du
Jiajun Wu
DiffM
24
510
0
08 Apr 2021
Deep Consensus Learning
Wei Sun
Tianfu Wu
24
2
0
15 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
478
0
08 Mar 2021
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
8
241
0
09 Jan 2021
Learning Energy-Based Models With Adversarial Training
Xuwang Yin
Shiying Li
Gustavo K. Rohde
AAML
DiffM
12
9
0
11 Dec 2020
Accurate 3D Object Detection using Energy-Based Models
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
3DPC
30
10
0
08 Dec 2020
Improved Contrastive Divergence Training of Energy Based Models
Yilun Du
Shuang Li
J. Tenenbaum
Igor Mordatch
14
138
0
02 Dec 2020
Locally Masked Convolution for Autoregressive Models
Ajay Jain
Pieter Abbeel
Deepak Pathak
DiffM
OffRL
28
31
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
116
16,901
0
19 Jun 2020
Residual Energy-Based Models for Text Generation
Yuntian Deng
A. Bakhtin
Myle Ott
Arthur Szlam
MarcÁurelio Ranzato
20
125
0
22 Apr 2020
Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference
Erik Nijkamp
Bo Pang
Tian Han
Linqi Zhou
Song-Chun Zhu
Ying Nian Wu
BDL
DRL
17
2
0
04 Dec 2019
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp
Mitch Hill
Tian Han
Song-Chun Zhu
Ying Nian Wu
19
151
0
29 Mar 2019
1