Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.02541
Cited By
v1
v2 (latest)
Relational Pooling for Graph Representations
6 March 2019
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Bruno Ribeiro
GNN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Relational Pooling for Graph Representations"
50 / 167 papers shown
Title
Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance
Jinwoo Kim
Tien Dat Nguyen
Ayhan Suleymanzade
Hyeokjun An
Seunghoon Hong
100
24
0
05 Jun 2023
Size Generalization of Graph Neural Networks on Biological Data: Insights and Practices from the Spectral Perspective
Gao Li
Danai Koutra
Yujun Yan
31
1
0
24 May 2023
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Cai Zhou
Xiyuan Wang
Muhan Zhang
66
15
0
08 May 2023
What Do GNNs Actually Learn? Towards Understanding their Representations
Giannis Nikolentzos
Michail Chatzianastasis
Michalis Vazirgiannis
GNN
AI4CE
63
1
0
21 Apr 2023
An Empirical Study of Realized GNN Expressiveness
Yanbo Wang
Muhan Zhang
93
14
0
16 Apr 2023
An Efficient Subgraph GNN with Provable Substructure Counting Power
Zuoyu Yan
Junru Zhou
Liangcai Gao
Zhi Tang
Muhan Zhang
GNN
84
14
0
19 Mar 2023
Exphormer: Sparse Transformers for Graphs
Hamed Shirzad
A. Velingker
B. Venkatachalam
Danica J. Sutherland
A. Sinop
76
118
0
10 Mar 2023
Are More Layers Beneficial to Graph Transformers?
Haiteng Zhao
Shuming Ma
Dongdong Zhang
Zhi-Hong Deng
Furu Wei
67
14
0
01 Mar 2023
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
82
33
0
22 Feb 2023
Diffusion Probabilistic Models for Structured Node Classification
Hyosoon Jang
Seonghyun Park
Sangwoo Mo
SungSoo Ahn
DiffM
77
3
0
21 Feb 2023
G-Signatures: Global Graph Propagation With Randomized Signatures
Bernhard Schafl
Lukas Gruber
Johannes Brandstetter
Sepp Hochreiter
146
2
0
17 Feb 2023
Attending to Graph Transformers
Luis Muller
Mikhail Galkin
Christopher Morris
Ladislav Rampášek
97
93
0
08 Feb 2023
Double Equivariance for Inductive Link Prediction for Both New Nodes and New Relation Types
Jianfei Gao
Yangze Zhou
Jincheng Zhou
Bruno Ribeiro
105
13
0
02 Feb 2023
WL meet VC
Christopher Morris
Floris Geerts
Jan Tönshoff
Martin Grohe
114
27
0
26 Jan 2023
Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
Ryoma Sato
95
6
0
26 Jan 2023
State of the Art and Potentialities of Graph-level Learning
Zhenyu Yang
Ge Zhang
Hongzhi Zhang
Jian Yang
Quan.Z Sheng
...
Charu C. Aggarwal
Hao Peng
Wenbin Hu
Edwin R. Hancock
Pietro Lio
GNN
AI4CE
125
15
0
14 Jan 2023
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
115
98
0
27 Dec 2022
Bridging Graph Position Encodings for Transformers with Weighted Graph-Walking Automata
Patrick M. Soga
David Chiang
146
0
0
13 Dec 2022
Integration of Pre-trained Protein Language Models into Geometric Deep Learning Networks
Fang Wu
Yujun Tao
Dragomir R. Radev
Jinbo Xu
Stan Z. Li
AI4CE
86
34
0
07 Dec 2022
Invariance-Aware Randomized Smoothing Certificates
Jan Schuchardt
Stephan Günnemann
AAML
56
6
0
25 Nov 2022
Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Anders Aamand
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Nicholas Schiefer
Sandeep Silwal
Tal Wagner
83
21
0
06 Nov 2022
Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations
Giannis Nikolentzos
Michail Chatzianastasis
Michalis Vazirgiannis
53
8
0
04 Nov 2022
Boosting the Cycle Counting Power of Graph Neural Networks with I
2
^2
2
-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
132
49
0
22 Oct 2022
A Practical, Progressively-Expressive GNN
Lingxiao Zhao
Louis Härtel
Neil Shah
Leman Akoglu
85
18
0
18 Oct 2022
Memory-Augmented Graph Neural Networks: A Brain-Inspired Review
Guixiang Ma
Vy A. Vo
Ted Willke
Nesreen Ahmed
74
1
0
22 Sep 2022
LogGD:Detecting Anomalies from System Logs by Graph Neural Networks
Yongzhen Xie
Hongyu Zhang
M. Babar
AI4TS
81
20
0
16 Sep 2022
Affinity-Aware Graph Networks
A. Velingker
A. Sinop
Ira Ktena
Petar Velickovic
Sreenivas Gollapudi
GNN
107
17
0
23 Jun 2022
Ordered Subgraph Aggregation Networks
Chao Qian
Gaurav Rattan
Floris Geerts
Christopher Morris
Mathias Niepert
121
58
0
22 Jun 2022
Empowering GNNs via Edge-Aware Weisfeiler-Leman Algorithm
Meng Liu
Haiyang Yu
Shuiwang Ji
56
1
0
04 Jun 2022
Shortest Path Networks for Graph Property Prediction
Ralph Abboud
Radoslav Dimitrov
.Ismail .Ilkan Ceylan
GNN
109
49
0
02 Jun 2022
Graph-level Neural Networks: Current Progress and Future Directions
Ge Zhang
Hongzhi Zhang
Jian Yang
Shan Xue
Wenbin Hu
Chuan Zhou
Hao Peng
Quan.Z Sheng
Charu C. Aggarwal
GNN
AI4CE
96
0
0
31 May 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
160
39
0
30 May 2022
Going Deeper into Permutation-Sensitive Graph Neural Networks
Zhongyu Huang
Yingheng Wang
Chaozhuo Li
Huiguang He
78
32
0
28 May 2022
How Powerful are K-hop Message Passing Graph Neural Networks
Jiarui Feng
Yixin Chen
Fuhai Li
Anindya Sarkar
Muhan Zhang
77
108
0
26 May 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
Anh Tuan Luu
Guy Wolf
Dominique Beaini
169
581
0
25 May 2022
Representation Power of Graph Neural Networks: Improved Expressivity via Algebraic Analysis
Charilaos I. Kanatsoulis
Alejandro Ribeiro
55
4
0
19 May 2022
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
93
70
0
16 Apr 2022
Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities
Chuang Liu
Yibing Zhan
Hongzhi Zhang
Chang Li
Bo Du
Wenbin Hu
Tongliang Liu
Dacheng Tao
GNN
AI4CE
112
82
0
15 Apr 2022
A Survey on Graph Representation Learning Methods
Shima Khoshraftar
A. An
GNN
AI4TS
103
124
0
04 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
129
40
0
25 Mar 2022
Graph Representation Learning with Individualization and Refinement
Mohammed Haroon Dupty
W. Lee
50
3
0
17 Mar 2022
Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks
Hongya Wang
Haoteng Yin
Muhan Zhang
Pan Li
116
115
0
01 Mar 2022
Message passing all the way up
Petar Velickovic
175
66
0
22 Feb 2022
Molecular Representation Learning via Heterogeneous Motif Graph Neural Networks
Zhaoning Yu
Hongyang Gao
73
45
0
01 Feb 2022
Revisiting Transformation Invariant Geometric Deep Learning: Are Initial Representations All You Need?
Ziwei Zhang
Xin Eric Wang
Zeyang Zhang
Peng Cui
Wenwu Zhu
3DPC
53
6
0
23 Dec 2021
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten Borgwardt
GNN
127
118
0
18 Dec 2021
Set Twister for Single-hop Node Classification
Yangze Zhou
Vinayak A. Rao
Bruno Ribeiro
60
0
0
17 Dec 2021
A systematic approach to random data augmentation on graph neural networks
Billy Joe Franks
Markus Anders
Marius Kloft
Pascal Schweitzer
OOD
AAML
18
0
0
08 Dec 2021
Nested Graph Neural Networks
Muhan Zhang
Pan Li
88
169
0
25 Oct 2021
Graph Filtration Kernels
Till Hendrik Schulz
Pascal Welke
Stefanie Wrobel
60
13
0
22 Oct 2021
Previous
1
2
3
4
Next