Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.02541
Cited By
v1
v2 (latest)
Relational Pooling for Graph Representations
6 March 2019
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Bruno Ribeiro
GNN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Relational Pooling for Graph Representations"
50 / 167 papers shown
Title
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
GNN
292
330
0
15 Oct 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
Leman Akoglu
Neil Shah
GNN
144
165
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
133
180
0
06 Oct 2021
Permute Me Softly: Learning Soft Permutations for Graph Representations
Giannis Nikolentzos
George Dasoulas
Michalis Vazirgiannis
GNN
77
9
0
05 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
196
79
0
01 Oct 2021
Graph Neural Networks for Graph Drawing
Matteo Tiezzi
Gabriele Ciravegna
Marco Gori
87
21
0
21 Sep 2021
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Tianlong Chen
Kaixiong Zhou
Keyu Duan
Wenqing Zheng
Peihao Wang
Helen Zhou
Zhangyang Wang
AAML
GNN
65
66
0
24 Aug 2021
Global Self-Attention as a Replacement for Graph Convolution
Md Shamim Hussain
Mohammed J Zaki
D. Subramanian
ViT
101
127
0
07 Aug 2021
Generalization of graph network inferences in higher-order graphical models
Yicheng Fei
Xaq Pitkow
72
0
0
12 Jul 2021
Weisfeiler and Lehman Go Cellular: CW Networks
Cristian Bodnar
Fabrizio Frasca
N. Otter
Yu Guang Wang
Pietro Lio
Guido Montúfar
M. Bronstein
GNN
133
237
0
23 Jun 2021
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Jonathan Godwin
Michael Schaarschmidt
Alex Gaunt
Alvaro Sanchez-Gonzalez
Yulia Rubanova
Petar Velivcković
J. Kirkpatrick
Peter W. Battaglia
101
60
0
15 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
79
136
0
11 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
88
128
0
08 Jun 2021
Neural Networks for Learning Counterfactual G-Invariances from Single Environments
S Chandra Mouli
Bruno Ribeiro
OOD
77
12
0
20 Apr 2021
Quantum Mechanics and Machine Learning Synergies: Graph Attention Neural Networks to Predict Chemical Reactivity
Mohammadamin Tavakoli
Aaron Mood
David Van Vranken
Pierre Baldi
GNN
AI4CE
49
29
0
24 Mar 2021
On the Equivalence Between Temporal and Static Graph Representations for Observational Predictions
Jianfei Gao
Bruno Ribeiro
82
11
0
12 Mar 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
138
110
0
08 Mar 2021
Generalized Equivariance and Preferential Labeling for GNN Node Classification
Zeyu Sun
Wenjie Zhang
Lili Mou
Qihao Zhu
Yingfei Xiong
Lu Zhang
105
12
0
23 Feb 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
115
361
0
18 Feb 2021
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
166
33
0
17 Feb 2021
Learning Graph Representations
Rucha Bhalchandra Joshi
Subhankar Mishra
GNN
AI4CE
12
5
0
03 Feb 2021
Identity-aware Graph Neural Networks
Jiaxuan You
Jonathan M. Gomes-Selman
Rex Ying
J. Leskovec
62
259
0
25 Jan 2021
A pipeline for fair comparison of graph neural networks in node classification tasks
Wentao Zhao
Dalin Zhou
X. Qiu
Wei Jiang
59
5
0
19 Dec 2020
A Generalization of Transformer Networks to Graphs
Vijay Prakash Dwivedi
Xavier Bresson
AI4CE
115
763
0
17 Dec 2020
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
166
125
0
16 Dec 2020
Breaking the Expressive Bottlenecks of Graph Neural Networks
Mingqi Yang
Yanming Shen
Heng Qi
Baocai Yin
72
10
0
14 Dec 2020
Adversarial Permutation Guided Node Representations for Link Prediction
Indradyumna Roy
A. De
Soumen Chakrabarti
66
15
0
13 Dec 2020
Counting Substructures with Higher-Order Graph Neural Networks: Possibility and Impossibility Results
B. Tahmasebi
Derek Lim
Stefanie Jegelka
GNN
137
30
0
06 Dec 2020
Graph convolutions that can finally model local structure
Rémy Brossard
Oriel Frigo
David Dehaene
GNN
114
48
0
30 Nov 2020
Design Space for Graph Neural Networks
Jiaxuan You
Rex Ying
J. Leskovec
GNN
AI4CE
204
323
0
17 Nov 2020
Handling Missing Data with Graph Representation Learning
Jiaxuan You
Xiaobai Ma
D. Ding
Mykel Kochenderfer
J. Leskovec
82
182
0
30 Oct 2020
Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous Graph Neural Networks
Hao Tang
Zhiao Huang
Jiayuan Gu
Bao-Liang Lu
Hao Su
AI4CE
70
9
0
26 Oct 2020
Graph Information Bottleneck
Tailin Wu
Hongyu Ren
Pan Li
J. Leskovec
AAML
165
240
0
24 Oct 2020
Rethinking pooling in graph neural networks
Diego Mesquita
Amauri Souza
Samuel Kaski
GNN
AI4CE
293
118
0
22 Oct 2020
Unsupervised Joint
k
k
k
-node Graph Representations with Compositional Energy-Based Models
Leonardo Cotta
Carlos H. C. Teixeira
A. Swami
Bruno Ribeiro
SSL
72
9
0
08 Oct 2020
GraphITE: Estimating Individual Effects of Graph-structured Treatments
Shonosuke Harada
H. Kashima
CML
97
23
0
29 Sep 2020
Permutation-equivariant and Proximity-aware Graph Neural Networks with Stochastic Message Passing
Ziwei Zhang
Chenhao Niu
Peng Cui
Jian Pei
Bo Zhang
Wenwu Zhu
61
2
0
05 Sep 2020
Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning
Pan Li
Yanbang Wang
Hongwei Wang
J. Leskovec
GNN
101
12
0
31 Aug 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
106
111
0
28 Jun 2020
Building powerful and equivariant graph neural networks with structural message-passing
Clément Vignac
Andreas Loukas
P. Frossard
98
123
0
26 Jun 2020
Hierarchical Inter-Message Passing for Learning on Molecular Graphs
Matthias Fey
Jan-Gin Yuen
F. Weichert
GNN
100
86
0
22 Jun 2020
Subgraph Neural Networks
Emily Alsentzer
S. G. Finlayson
Michelle M. Li
Marinka Zitnik
GNN
150
139
0
18 Jun 2020
Quantifying Challenges in the Application of Graph Representation Learning
Antonia Gogoglou
C. Bayan Bruss
Brian Nguyen
Reza Sarshogh
Keegan E. Hines
20
2
0
18 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
136
439
0
16 Jun 2020
Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs
Ziwei Zhang
Peng Cui
J. Pei
Xin Eric Wang
Wenwu Zhu
GNN
84
33
0
08 Jun 2020
The Impact of Global Structural Information in Graph Neural Networks Applications
Davide Buffelli
Fabio Vandin
AI4CE
66
8
0
06 Jun 2020
How hard is to distinguish graphs with graph neural networks?
Andreas Loukas
GNN
84
6
0
13 May 2020
Deep Constraint-based Propagation in Graph Neural Networks
Matteo Tiezzi
G. Marra
S. Melacci
Marco Maggini
AI4CE
GNN
73
13
0
05 May 2020
Graph Homomorphism Convolution
Hoang NT
Takanori Maehara
170
41
0
03 May 2020
MxPool: Multiplex Pooling for Hierarchical Graph Representation Learning
Yanyan Liang
Yanfeng Zhang
Dechao Gao
Qian Xu
GNN
22
5
0
15 Apr 2020
Previous
1
2
3
4
Next