ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.00374
  4. Cited By
Model-Based Reinforcement Learning for Atari

Model-Based Reinforcement Learning for Atari

1 March 2019
Lukasz Kaiser
Mohammad Babaeizadeh
Piotr Milos
B. Osinski
R. Campbell
K. Czechowski
D. Erhan
Chelsea Finn
Piotr Kozakowski
Sergey Levine
Afroz Mohiuddin
Ryan Sepassi
George Tucker
Henryk Michalewski
    OffRL
ArXivPDFHTML

Papers citing "Model-Based Reinforcement Learning for Atari"

14 / 214 papers shown
Title
Model-based Reinforcement Learning for Predictions and Control for Limit
  Order Books
Model-based Reinforcement Learning for Predictions and Control for Limit Order Books
Haoran Wei
Yuanbo Wang
L. Mangu
Keith S. Decker
13
24
0
09 Oct 2019
Making sense of sensory input
Making sense of sensory input
Maciej Wołczyk
Jacek Tabor
Johannes Welbl
Szymon Maszke
Marek Sergot
19
52
0
05 Oct 2019
Mathematical Reasoning in Latent Space
Mathematical Reasoning in Latent Space
Dennis Lee
Christian Szegedy
M. Rabe
Sarah M. Loos
Kshitij Bansal
30
33
0
26 Sep 2019
Off-Policy Actor-Critic with Shared Experience Replay
Off-Policy Actor-Critic with Shared Experience Replay
Simon Schmitt
Matteo Hessel
Karen Simonyan
OffRL
27
68
0
25 Sep 2019
Gradient-Aware Model-based Policy Search
Gradient-Aware Model-based Policy Search
P. DÓro
Alberto Maria Metelli
Andrea Tirinzoni
Matteo Papini
Marcello Restelli
29
34
0
09 Sep 2019
Dynamics-aware Embeddings
Dynamics-aware Embeddings
William F. Whitney
Rajat Agarwal
Kyunghyun Cho
Abhinav Gupta
SSL
25
53
0
25 Aug 2019
Rapid trial-and-error learning with simulation supports flexible tool
  use and physical reasoning
Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning
Kelsey R. Allen
Kevin A. Smith
J. Tenenbaum
LRM
31
108
0
22 Jul 2019
Modern Deep Reinforcement Learning Algorithms
Modern Deep Reinforcement Learning Algorithms
Sergey Ivanov
A. Dýakonov
OffRL
29
39
0
24 Jun 2019
Unsupervised Learning of Object Keypoints for Perception and Control
Unsupervised Learning of Object Keypoints for Perception and Control
Tejas D. Kulkarni
Ankush Gupta
Catalin Ionescu
Sebastian Borgeaud
Malcolm Reynolds
Andrew Zisserman
Volodymyr Mnih
SSL
OCL
14
193
0
19 Jun 2019
When to use parametric models in reinforcement learning?
When to use parametric models in reinforcement learning?
H. V. Hasselt
Matteo Hessel
John Aslanides
37
189
0
12 Jun 2019
Fast Task Inference with Variational Intrinsic Successor Features
Fast Task Inference with Variational Intrinsic Successor Features
Steven Hansen
Will Dabney
André Barreto
T. Wiele
David Warde-Farley
Volodymyr Mnih
BDL
44
151
0
12 Jun 2019
The Principle of Unchanged Optimality in Reinforcement Learning
  Generalization
The Principle of Unchanged Optimality in Reinforcement Learning Generalization
A. Irpan
Xingyou Song
OffRL
33
7
0
02 Jun 2019
COBRA: Data-Efficient Model-Based RL through Unsupervised Object
  Discovery and Curiosity-Driven Exploration
COBRA: Data-Efficient Model-Based RL through Unsupervised Object Discovery and Curiosity-Driven Exploration
Nicholas Watters
Loic Matthey
Matko Bosnjak
Christopher P. Burgess
Alexander Lerchner
OffRL
19
117
0
22 May 2019
Self-Adapting Goals Allow Transfer of Predictive Models to New Tasks
Self-Adapting Goals Allow Transfer of Predictive Models to New Tasks
K. Ellefsen
J. Tørresen
22
1
0
04 Apr 2019
Previous
12345