ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.07758
32
6

Game-theoretic Objective Space Planning

16 September 2022
Hongrui Zheng
Zhijun Zhuang
Johannes Betz
Rahul Mangharam
ArXivPDFHTML
Abstract

Generating competitive strategies and performing continuous motion planning simultaneously in an adversarial setting is a challenging problem. In addition, understanding the intent of other agents is crucial to deploying autonomous systems in adversarial multi-agent environments. Existing approaches either discretize agent action by grouping similar control inputs, sacrificing performance in motion planning, or plan in uninterpretable latent spaces, producing hard-to-understand agent behaviors. Furthermore, the most popular policy optimization frameworks do not recognize the long-term effect of actions and become myopic. This paper proposes an agent action discretization method via abstraction that provides clear intentions of agent actions, an efficient offline pipeline of agent population synthesis, and a planning strategy using counterfactual regret minimization with function approximation. Finally, we experimentally validate our findings on scaled autonomous vehicles in a head-to-head racing setting. We demonstrate that using the proposed framework significantly improves learning, improves the win rate against different opponents, and the improvements can be transferred to unseen opponents in an unseen environment.

View on arXiv
Comments on this paper