Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.06720
Cited By
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
18 February 2019
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent"
50 / 261 papers shown
Title
Quantifying Epistemic Uncertainty in Deep Learning
Ziyi Huang
H. Lam
Haofeng Zhang
UQCV
BDL
UD
PER
24
12
0
23 Oct 2021
Probabilistic fine-tuning of pruning masks and PAC-Bayes self-bounded learning
Soufiane Hayou
Bo He
Gintare Karolina Dziugaite
37
2
0
22 Oct 2021
Deep Active Learning by Leveraging Training Dynamics
Haonan Wang
Wei Huang
Ziwei Wu
A. Margenot
Hanghang Tong
Jingrui He
AI4CE
27
33
0
16 Oct 2021
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix Completion
Zhemin Li
Tao Sun
Hongxia Wang
Bao Wang
50
6
0
12 Oct 2021
New Insights into Graph Convolutional Networks using Neural Tangent Kernels
Mahalakshmi Sabanayagam
P. Esser
D. Ghoshdastidar
26
6
0
08 Oct 2021
Improved architectures and training algorithms for deep operator networks
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
52
105
0
04 Oct 2021
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
29
19
0
20 Sep 2021
NASI: Label- and Data-agnostic Neural Architecture Search at Initialization
Yao Shu
Shaofeng Cai
Zhongxiang Dai
Beng Chin Ooi
K. H. Low
22
43
0
02 Sep 2021
On Accelerating Distributed Convex Optimizations
Kushal Chakrabarti
Nirupam Gupta
Nikhil Chopra
29
7
0
19 Aug 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
229
0
27 Jul 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
35
274
0
29 Jun 2021
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation
Haoxiang Wang
Han Zhao
Bo-wen Li
37
88
0
16 Jun 2021
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
M. Wyart
30
31
0
16 Jun 2021
How to Train Your Wide Neural Network Without Backprop: An Input-Weight Alignment Perspective
Akhilan Boopathy
Ila Fiete
27
9
0
15 Jun 2021
What can linearized neural networks actually say about generalization?
Guillermo Ortiz-Jiménez
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
29
43
0
12 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
34
26
0
10 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSL
MLT
36
31
0
08 Jun 2021
The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width Limit at Initialization
Mufan Li
Mihai Nica
Daniel M. Roy
32
33
0
07 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Global Convergence of Three-layer Neural Networks in the Mean Field Regime
H. Pham
Phan-Minh Nguyen
MLT
AI4CE
41
19
0
11 May 2021
Analyzing Monotonic Linear Interpolation in Neural Network Loss Landscapes
James Lucas
Juhan Bae
Michael Ruogu Zhang
Stanislav Fort
R. Zemel
Roger C. Grosse
MoMe
164
28
0
22 Apr 2021
Unsupervised Shape Completion via Deep Prior in the Neural Tangent Kernel Perspective
Lei Chu
Hao Pan
Wenping Wang
3DPC
34
11
0
19 Apr 2021
Fast Adaptation with Linearized Neural Networks
Wesley J. Maddox
Shuai Tang
Pablo G. Moreno
A. Wilson
Andreas C. Damianou
32
32
0
02 Mar 2021
Computing the Information Content of Trained Neural Networks
Jeremy Bernstein
Yisong Yue
27
4
0
01 Mar 2021
Experiments with Rich Regime Training for Deep Learning
Xinyan Li
A. Banerjee
32
2
0
26 Feb 2021
Provable Super-Convergence with a Large Cyclical Learning Rate
Samet Oymak
33
12
0
22 Feb 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
A linearized framework and a new benchmark for model selection for fine-tuning
Aditya Deshpande
Alessandro Achille
Avinash Ravichandran
Hao Li
L. Zancato
Charless C. Fowlkes
Rahul Bhotika
Stefano Soatto
Pietro Perona
ALM
118
46
0
29 Jan 2021
Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan
Alessandro Achille
Giovanni Paolini
Orchid Majumder
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
27
24
0
17 Jan 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
36
21
0
13 Jan 2021
LQF: Linear Quadratic Fine-Tuning
Alessandro Achille
Aditya Golatkar
Avinash Ravichandran
M. Polito
Stefano Soatto
29
27
0
21 Dec 2020
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
131
439
0
18 Dec 2020
Faster Non-Convex Federated Learning via Global and Local Momentum
Rudrajit Das
Anish Acharya
Abolfazl Hashemi
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
FedML
37
82
0
07 Dec 2020
Noise and Fluctuation of Finite Learning Rate Stochastic Gradient Descent
Kangqiao Liu
Liu Ziyin
Masakuni Ueda
MLT
61
37
0
07 Dec 2020
Fourier-domain Variational Formulation and Its Well-posedness for Supervised Learning
Tao Luo
Zheng Ma
Zhiwei Wang
Zhi-Qin John Xu
Yaoyu Zhang
OOD
44
4
0
06 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
257
0
18 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
39
18
0
09 Nov 2020
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
240
0
30 Oct 2020
Scaling Laws for Autoregressive Generative Modeling
T. Henighan
Jared Kaplan
Mor Katz
Mark Chen
Christopher Hesse
...
Nick Ryder
Daniel M. Ziegler
John Schulman
Dario Amodei
Sam McCandlish
32
405
0
28 Oct 2020
Are wider nets better given the same number of parameters?
A. Golubeva
Behnam Neyshabur
Guy Gur-Ari
27
44
0
27 Oct 2020
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
J. Rocks
Pankaj Mehta
18
41
0
26 Oct 2020
A Dynamical View on Optimization Algorithms of Overparameterized Neural Networks
Zhiqi Bu
Shiyun Xu
Kan Chen
33
17
0
25 Oct 2020
Stable ResNet
Soufiane Hayou
Eugenio Clerico
Bo He
George Deligiannidis
Arnaud Doucet
Judith Rousseau
ODL
SSeg
46
51
0
24 Oct 2020
Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
Andrea Agazzi
Jianfeng Lu
13
15
0
22 Oct 2020
Knowledge Distillation in Wide Neural Networks: Risk Bound, Data Efficiency and Imperfect Teacher
Guangda Ji
Zhanxing Zhu
59
42
0
20 Oct 2020
A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix
T. Doan
Mehdi Abbana Bennani
Bogdan Mazoure
Guillaume Rabusseau
Pierre Alquier
CLL
20
80
0
07 Oct 2020
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
21
140
0
02 Oct 2020
Tensor Programs III: Neural Matrix Laws
Greg Yang
14
43
0
22 Sep 2020
Previous
1
2
3
4
5
6
Next