ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06720
  4. Cited By
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient
  Descent

Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent

18 February 2019
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
ArXivPDFHTML

Papers citing "Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent"

50 / 261 papers shown
Title
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
Predicting Training Time Without Training
Predicting Training Time Without Training
L. Zancato
Alessandro Achille
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
26
24
0
28 Aug 2020
Deep Networks and the Multiple Manifold Problem
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Whitening and second order optimization both make information in the
  dataset unusable during training, and can reduce or prevent generalization
Whitening and second order optimization both make information in the dataset unusable during training, and can reduce or prevent generalization
Neha S. Wadia
Daniel Duckworth
S. Schoenholz
Ethan Dyer
Jascha Narain Sohl-Dickstein
27
13
0
17 Aug 2020
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
15
42
0
02 Aug 2020
When and why PINNs fail to train: A neural tangent kernel perspective
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
33
878
0
28 Jul 2020
The Interpolation Phase Transition in Neural Networks: Memorization and
  Generalization under Lazy Training
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
47
95
0
25 Jul 2020
Provably Efficient Neural Estimation of Structural Equation Model: An
  Adversarial Approach
Provably Efficient Neural Estimation of Structural Equation Model: An Adversarial Approach
Luofeng Liao
You-Lin Chen
Zhuoran Yang
Bo Dai
Zhaoran Wang
Mladen Kolar
27
32
0
02 Jul 2020
Beyond Signal Propagation: Is Feature Diversity Necessary in Deep Neural
  Network Initialization?
Beyond Signal Propagation: Is Feature Diversity Necessary in Deep Neural Network Initialization?
Yaniv Blumenfeld
D. Gilboa
Daniel Soudry
ODL
30
13
0
02 Jul 2020
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Yibo Jiang
Cengiz Pehlevan
19
13
0
30 Jun 2020
Tensor Programs II: Neural Tangent Kernel for Any Architecture
Tensor Programs II: Neural Tangent Kernel for Any Architecture
Greg Yang
58
134
0
25 Jun 2020
Generalisation Guarantees for Continual Learning with Orthogonal
  Gradient Descent
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
50
61
0
21 Jun 2020
An analytic theory of shallow networks dynamics for hinge loss
  classification
An analytic theory of shallow networks dynamics for hinge loss classification
Franco Pellegrini
Giulio Biroli
35
19
0
19 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low
  Dimensional Domains
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
60
2,344
0
18 Jun 2020
Directional Pruning of Deep Neural Networks
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
21
33
0
16 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A
  Mean-Field Theory
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
105
11
0
08 Jun 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for
  linear-width neural networks
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
44
71
0
25 May 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical
  Parameter Estimation
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
20
31
0
22 May 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Learning the gravitational force law and other analytic functions
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
16
0
0
15 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
39
183
0
10 Mar 2020
The large learning rate phase of deep learning: the catapult mechanism
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
234
0
04 Mar 2020
Loss landscapes and optimization in over-parameterized non-linear
  systems and neural networks
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
Chaoyue Liu
Libin Zhu
M. Belkin
ODL
14
247
0
29 Feb 2020
Deep regularization and direct training of the inner layers of Neural
  Networks with Kernel Flows
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
22
21
0
19 Feb 2020
Learning Parities with Neural Networks
Learning Parities with Neural Networks
Amit Daniely
Eran Malach
24
76
0
18 Feb 2020
Self-Distillation Amplifies Regularization in Hilbert Space
Self-Distillation Amplifies Regularization in Hilbert Space
H. Mobahi
Mehrdad Farajtabar
Peter L. Bartlett
19
226
0
13 Feb 2020
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
109
130
0
07 Feb 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural
  Networks
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
Cengiz Pehlevan
146
201
0
07 Feb 2020
On the infinite width limit of neural networks with a standard
  parameterization
On the infinite width limit of neural networks with a standard parameterization
Jascha Narain Sohl-Dickstein
Roman Novak
S. Schoenholz
Jaehoon Lee
32
47
0
21 Jan 2020
Any Target Function Exists in a Neighborhood of Any Sufficiently Wide
  Random Network: A Geometrical Perspective
Any Target Function Exists in a Neighborhood of Any Sufficiently Wide Random Network: A Geometrical Perspective
S. Amari
27
12
0
20 Jan 2020
Mean field theory for deep dropout networks: digging up gradient
  backpropagation deeply
Mean field theory for deep dropout networks: digging up gradient backpropagation deeply
Wei Huang
R. Xu
Weitao Du
Yutian Zeng
Yunce Zhao
22
6
0
19 Dec 2019
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
29
224
0
05 Dec 2019
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
35
214
0
03 Dec 2019
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Ravid Shwartz-Ziv
Alexander A. Alemi
19
21
0
20 Nov 2019
Neural Spectrum Alignment: Empirical Study
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
29
14
0
19 Oct 2019
The Local Elasticity of Neural Networks
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
40
44
0
15 Oct 2019
On the expected behaviour of noise regularised deep neural networks as
  Gaussian processes
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
16
9
0
12 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
19
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of
  Wide Neural Networks
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Non-Gaussian processes and neural networks at finite widths
Non-Gaussian processes and neural networks at finite widths
Sho Yaida
15
88
0
30 Sep 2019
Asymptotics of Wide Networks from Feynman Diagrams
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
29
113
0
25 Sep 2019
Finite Depth and Width Corrections to the Neural Tangent Kernel
Finite Depth and Width Corrections to the Neural Tangent Kernel
Boris Hanin
Mihai Nica
MDE
27
150
0
13 Sep 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally
  Optimal Policy
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
24
108
0
25 Jun 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
322
0
13 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
24
352
0
13 Jun 2019
The Normalization Method for Alleviating Pathological Sharpness in Wide
  Neural Networks
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks
Ryo Karakida
S. Akaho
S. Amari
27
39
0
07 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
36
122
0
05 Jun 2019
Generalization bounds for deep convolutional neural networks
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
42
89
0
29 May 2019
Previous
123456
Next