Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.02476
Cited By
A Simple Baseline for Bayesian Uncertainty in Deep Learning
7 February 2019
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Simple Baseline for Bayesian Uncertainty in Deep Learning"
50 / 229 papers shown
Title
Reliable learning in challenging environments
Maria-Florina Balcan
Steve Hanneke
Rattana Pukdee
Dravyansh Sharma
OOD
30
4
0
06 Apr 2023
To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning
Ildus Sadrtdinov
Dmitrii Pozdeev
Dmitry Vetrov
E. Lobacheva
35
4
0
06 Mar 2023
Rethinking Confidence Calibration for Failure Prediction
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
Cheng-Lin Liu
UQCV
22
39
0
06 Mar 2023
Non-Parametric Outlier Synthesis
Leitian Tao
Xuefeng Du
Xiaojin Zhu
Yixuan Li
OODD
28
98
0
06 Mar 2023
A Review of Uncertainty Estimation and its Application in Medical Imaging
K. Zou
Zhihao Chen
Xuedong Yuan
Xiaojing Shen
Meng Wang
Huazhu Fu
UQCV
49
85
0
16 Feb 2023
Bayesian Federated Inference for estimating Statistical Models based on Non-shared Multicenter Data sets
Marianne A Jonker
H. Pazira
Anthony C. C. Coolen
FedML
28
5
0
15 Feb 2023
Probabilistic Circuits That Know What They Don't Know
Fabrizio G. Ventola
Steven Braun
Zhongjie Yu
Martin Mundt
Kristian Kersting
UQCV
TPM
32
7
0
13 Feb 2023
Fixing Overconfidence in Dynamic Neural Networks
Lassi Meronen
Martin Trapp
Andrea Pilzer
Le Yang
Arno Solin
BDL
37
16
0
13 Feb 2023
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Christian Tomani
Futa Waseda
Yuesong Shen
Daniel Cremers
UQCV
37
4
0
10 Feb 2023
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
39
35
0
10 Feb 2023
Joint Training of Deep Ensembles Fails Due to Learner Collusion
Alan Jeffares
Tennison Liu
Jonathan Crabbé
M. Schaar
FedML
56
15
0
26 Jan 2023
Uncertainty Estimation based on Geometric Separation
Gabriella Chouraqui
L. Cohen
Gil Einziger
Liel Leman
35
0
0
11 Jan 2023
Failure Detection for Motion Prediction of Autonomous Driving: An Uncertainty Perspective
Wenbo Shao
Yan Xu
Liang Peng
Jun Li
Hong Wang
34
15
0
11 Jan 2023
Do Bayesian Variational Autoencoders Know What They Don't Know?
Misha Glazunov
Apostolis Zarras
UQCV
BDL
28
5
0
29 Dec 2022
Improving Uncertainty Quantification of Variance Networks by Tree-Structured Learning
Wenxuan Ma
Xing Yan
Kun Zhang
UQCV
28
0
0
24 Dec 2022
Uncertainty in Real-Time Semantic Segmentation on Embedded Systems
Ethan Goan
Clinton Fookes
UQCV
31
4
0
20 Dec 2022
A Probabilistic Framework for Lifelong Test-Time Adaptation
Dhanajit Brahma
Piyush Rai
TTA
24
35
0
19 Dec 2022
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
Hampus Linander
BDL
UQCV
29
5
0
15 Dec 2022
Investigating Deep Learning Model Calibration for Classification Problems in Mechanics
S. Mohammadzadeh
Peerasait Prachaseree
Emma Lejeune
AI4CE
34
2
0
01 Dec 2022
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
37
7
0
01 Dec 2022
Non-reversible Parallel Tempering for Deep Posterior Approximation
Wei Deng
Qian Zhang
Qi Feng
F. Liang
Guang Lin
26
4
0
20 Nov 2022
Layer-Stack Temperature Scaling
Amr Khalifa
Michael C. Mozer
Hanie Sedghi
Behnam Neyshabur
Ibrahim M. Alabdulmohsin
81
2
0
18 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
23
52
0
11 Nov 2022
Quantifying Model Uncertainty for Semantic Segmentation using Operators in the RKHS
Rishabh Singh
José C. Príncipe
UQCV
39
3
0
03 Nov 2022
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
21
6
0
31 Oct 2022
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDL
UQCV
35
1
0
24 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
50
19
0
23 Oct 2022
Packed-Ensembles for Efficient Uncertainty Estimation
Olivier Laurent
Adrien Lafage
Enzo Tartaglione
Geoffrey Daniel
Jean-Marc Martinez
Andrei Bursuc
Gianni Franchi
OODD
46
32
0
17 Oct 2022
JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks
Jian Kang
Qinghai Zhou
Hanghang Tong
UQCV
41
21
0
12 Oct 2022
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
31
80
0
05 Oct 2022
Accurate, reliable and interpretable solubility prediction of druglike molecules with attention pooling and Bayesian learning
Seongok Ryu
Sumin Lee
19
5
0
29 Sep 2022
Bayesian Neural Network Versus Ex-Post Calibration For Prediction Uncertainty
Satya Borgohain
Klaus Ackermann
Rubén Loaiza-Maya
BDL
UQCV
18
0
0
29 Sep 2022
Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning
Zhengwei Fang
Rui Wang
Tao Huang
L. Jing
AAML
40
5
0
24 Sep 2022
UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup
Zongbo Han
Zhipeng Liang
Fan Yang
Liu Liu
Lanqing Li
Yatao Bian
P. Zhao
Bing Wu
Changqing Zhang
Jianhua Yao
56
34
0
19 Sep 2022
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
32
4
0
17 Sep 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
255
318
0
11 Sep 2022
Investigating the Impact of Model Misspecification in Neural Simulation-based Inference
Patrick W Cannon
Daniel Ward
Sebastian M. Schmon
25
34
0
05 Sep 2022
CUAHN-VIO: Content-and-Uncertainty-Aware Homography Network for Visual-Inertial Odometry
Ying Xu
Guido de Croon
BDL
38
5
0
30 Aug 2022
OpenCon: Open-world Contrastive Learning
Yiyou Sun
Yixuan Li
VLM
SSL
DRL
57
39
0
04 Aug 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
43
1
0
02 Aug 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
21
9
0
02 Aug 2022
LGV: Boosting Adversarial Example Transferability from Large Geometric Vicinity
Martin Gubri
Maxime Cordy
Mike Papadakis
Yves Le Traon
Koushik Sen
AAML
35
51
0
26 Jul 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
62
71
0
19 Jul 2022
Instance-Aware Observer Network for Out-of-Distribution Object Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
39
1
0
18 Jul 2022
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors
Gianluca Detommaso
Alberto Gasparin
A. Wilson
Cédric Archambeau
UQCV
BDL
34
3
0
17 Jul 2022
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks
Uddeshya Upadhyay
Shyamgopal Karthik
Yanbei Chen
Massimiliano Mancini
Zeynep Akata
UQCV
BDL
35
22
0
14 Jul 2022
Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets
Yingsong Huang
Bing Bai
Shengwei Zhao
Kun Bai
Fei Wang
NoLa
30
44
0
12 Jul 2022
Usable Region Estimate for Assessing Practical Usability of Medical Image Segmentation Models
Yizhe Zhang
Suraj Mishra
Peixian Liang
Hao Zheng
Danny Chen
14
3
0
01 Jul 2022
Laplacian Autoencoders for Learning Stochastic Representations
M. Miani
Frederik Warburg
Pablo Moreno-Muñoz
Nicke Skafte Detlefsen
Søren Hauberg
UQCV
BDL
SSL
41
10
0
30 Jun 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
33
4
0
28 Jun 2022
Previous
1
2
3
4
5
Next