ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02476
  4. Cited By
A Simple Baseline for Bayesian Uncertainty in Deep Learning

A Simple Baseline for Bayesian Uncertainty in Deep Learning

7 February 2019
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
    BDL
    UQCV
ArXivPDFHTML

Papers citing "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

29 / 229 papers shown
Title
Calibrating Structured Output Predictors for Natural Language Processing
Calibrating Structured Output Predictors for Natural Language Processing
Abhyuday N. Jagannatha
Hong-ye Yu
22
28
0
09 Apr 2020
Predicting the outputs of finite deep neural networks trained with noisy
  gradients
Predicting the outputs of finite deep neural networks trained with noisy gradients
Gadi Naveh
Oded Ben-David
H. Sompolinsky
Zohar Ringel
19
21
0
02 Apr 2020
A comprehensive study on the prediction reliability of graph neural
  networks for virtual screening
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
24
7
0
17 Mar 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
30
219
0
16 Mar 2020
Intra Order-preserving Functions for Calibration of Multi-Class Neural
  Networks
Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks
Amir M. Rahimi
Amirreza Shaban
Ching-An Cheng
Richard I. Hartley
Byron Boots
UQCV
14
68
0
15 Mar 2020
GPCA: A Probabilistic Framework for Gaussian Process Embedded Channel
  Attention
GPCA: A Probabilistic Framework for Gaussian Process Embedded Channel Attention
Jiyang Xie
Dongliang Chang
Zhanyu Ma
Guoqiang Zhang
Jun Guo
26
25
0
10 Mar 2020
Iterative Averaging in the Quest for Best Test Error
Iterative Averaging in the Quest for Best Test Error
Diego Granziol
Xingchen Wan
Samuel Albanie
Stephen J. Roberts
10
3
0
02 Mar 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
33
277
0
24 Feb 2020
Safe Imitation Learning via Fast Bayesian Reward Inference from
  Preferences
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel S. Brown
Russell Coleman
R. Srinivasan
S. Niekum
BDL
30
101
0
21 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
641
0
20 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
25
58
0
19 Feb 2020
A Financial Service Chatbot based on Deep Bidirectional Transformers
A Financial Service Chatbot based on Deep Bidirectional Transformers
S. Yu
Yuxin Chen
Hussain Zaidi
25
33
0
17 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
33
314
0
15 Feb 2020
Stochastic Weight Averaging in Parallel: Large-Batch Training that
  Generalizes Well
Stochastic Weight Averaging in Parallel: Large-Batch Training that Generalizes Well
Vipul Gupta
S. Serrano
D. DeCoste
MoMe
38
55
0
07 Jan 2020
TRADI: Tracking deep neural network weight distributions for uncertainty
  estimation
TRADI: Tracking deep neural network weight distributions for uncertainty estimation
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
UQCV
26
51
0
24 Dec 2019
Deep Ensembles: A Loss Landscape Perspective
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OOD
UQCV
29
619
0
05 Dec 2019
On the Validity of Bayesian Neural Networks for Uncertainty Estimation
On the Validity of Bayesian Neural Networks for Uncertainty Estimation
John Mitros
Brian Mac Namee
UQCV
BDL
10
29
0
03 Dec 2019
Beyond temperature scaling: Obtaining well-calibrated multiclass
  probabilities with Dirichlet calibration
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull
Miquel Perelló Nieto
Markus Kängsepp
Telmo de Menezes e Silva Filho
Hao Song
Peter A. Flach
UQCV
31
370
0
28 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
38
142
0
17 Jul 2019
Neural ODEs as the Deep Limit of ResNets with constant weights
Neural ODEs as the Deep Limit of ResNets with constant weights
B. Avelin
K. Nystrom
ODL
40
31
0
28 Jun 2019
Non-Parametric Calibration for Classification
Non-Parametric Calibration for Classification
Jonathan Wenger
Hedvig Kjellström
Rudolph Triebel
UQCV
45
79
0
12 Jun 2019
Practical Deep Learning with Bayesian Principles
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
56
240
0
06 Jun 2019
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections
R. Y. Rohekar
Yaniv Gurwicz
Shami Nisimov
Gal Novik
BDL
UQCV
26
13
0
30 May 2019
Ensemble Distribution Distillation
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
27
231
0
30 Apr 2019
There Are Many Consistent Explanations of Unlabeled Data: Why You Should
  Average
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
208
243
0
14 Jun 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
268
0
13 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
310
2,892
0
15 Sep 2016
Previous
12345