Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.02102
Cited By
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
6 February 2019
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDL
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling"
50 / 62 papers shown
Title
Evolved Hierarchical Masking for Self-Supervised Learning
Zhanzhou Feng
Shiliang Zhang
49
0
0
12 Apr 2025
Your Image is Secretly the Last Frame of a Pseudo Video
Wenlong Chen
Wenlin Chen
Lapo Rastrelli
Yingzhen Li
DiffM
VGen
34
0
0
26 Oct 2024
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
34
2
0
03 Sep 2023
High Fidelity Image Counterfactuals with Probabilistic Causal Models
Fabio De Sousa Ribeiro
Tian Xia
M. Monteiro
Nick Pawlowski
Ben Glocker
DiffM
35
36
0
27 Jun 2023
High Fidelity Image Synthesis With Deep VAEs In Latent Space
Troy Luhman
Eric Luhman
DRL
3DV
31
7
0
23 Mar 2023
A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT
Yihan Cao
Siyu Li
Yixin Liu
Zhiling Yan
Yutong Dai
Philip S. Yu
Lichao Sun
38
508
0
07 Mar 2023
Discouraging posterior collapse in hierarchical Variational Autoencoders using context
Anna Kuzina
Jakub M. Tomczak
BDL
DRL
23
1
0
20 Feb 2023
Where to Diffuse, How to Diffuse, and How to Get Back: Automated Learning for Multivariate Diffusions
Raghav Singhal
Mark Goldstein
Rajesh Ranganath
DiffM
39
21
0
14 Feb 2023
Variational Mixture of HyperGenerators for Learning Distributions Over Functions
Batuhan Koyuncu
Pablo Sánchez-Martín
I. Peis
Pablo Martínez Olmos
Isabel Valera
BDL
GAN
DRL
25
5
0
13 Feb 2023
A Multi-Resolution Framework for U-Nets with Applications to Hierarchical VAEs
Fabian Falck
Christopher Williams
D. Danks
George Deligiannidis
C. Yau
Chris Holmes
Arnaud Doucet
M. Willetts
36
8
0
19 Jan 2023
Long-horizon video prediction using a dynamic latent hierarchy
Alexey Zakharov
Qinghai Guo
Z. Fountas
31
4
0
29 Dec 2022
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Guy Van den Broeck
Honghua Zhang
Mathias Niepert
TPM
25
24
0
10 Oct 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
134
77
0
02 Oct 2022
FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion
Fabian Duffhauss
Ngo Anh Vien
Hanna Ziesche
Gerhard Neumann
38
4
0
22 Sep 2022
Fast Lossless Neural Compression with Integer-Only Discrete Flows
Siyu Wang
Jianfei Chen
Chongxuan Li
Jun Zhu
Bo Zhang
MQ
26
7
0
17 Jun 2022
Top-down inference in an early visual cortex inspired hierarchical Variational Autoencoder
F. Csikor
B. Meszéna
Bence Szabó
Gergő Orbán
BDL
DRL
27
5
0
01 Jun 2022
Few-Shot Diffusion Models
Giorgio Giannone
Didrik Nielsen
Ole Winther
DiffM
186
49
0
30 May 2022
Novel Applications for VAE-based Anomaly Detection Systems
Luca Bergamin
Tommaso Carraro
Mirko Polato
F. Aiolli
DRL
24
6
0
26 Apr 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis
Max W. Y. Lam
Jun Wang
Dan Su
Dong Yu
DiffM
36
92
0
25 Mar 2022
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
31
12
0
18 Mar 2022
Image Super-Resolution With Deep Variational Autoencoders
Darius Chira
Ilian Haralampiev
Ole Winther
Andrea Dittadi
Valentin Liévin
DRL
35
32
0
17 Mar 2022
Long Document Summarization with Top-down and Bottom-up Inference
Bo Pang
Erik Nijkamp
Wojciech Kry'sciñski
Silvio Savarese
Yingbo Zhou
Caiming Xiong
RALM
BDL
24
55
0
15 Mar 2022
Model-agnostic out-of-distribution detection using combined statistical tests
Federico Bergamin
Pierre-Alexandre Mattei
Jakob Drachmann Havtorn
Hugo Senetaire
Hugo Schmutz
Lars Maaløe
Søren Hauberg
J. Frellsen
OODD
24
18
0
02 Mar 2022
Benchmarking Generative Latent Variable Models for Speech
Jakob Drachmann Havtorn
Lasse Borgholt
Søren Hauberg
J. Frellsen
Lars Maaløe
26
3
0
22 Feb 2022
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo
I. Peis
Chao Ma
José Miguel Hernández-Lobato
BDL
DRL
16
14
0
09 Feb 2022
VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming
Eleonora Misino
G. Marra
Emanuele Sansone
24
21
0
07 Feb 2022
Stay Positive: Non-Negative Image Synthesis for Augmented Reality
Katie Z Luo
Guandao Yang
Wenqi Xian
Harald Haraldsson
B. Hariharan
Serge Belongie
DiffM
23
5
0
01 Feb 2022
Out of Distribution Detection on ImageNet-O
Anugya Srivastava
S. Jain
Mugdha Thigle
OOD
57
5
0
23 Jan 2022
OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
OODD
23
6
0
28 Oct 2021
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization
Mucong Ding
Kezhi Kong
Jingling Li
Chen Zhu
John P. Dickerson
Furong Huang
Tom Goldstein
GNN
MQ
33
47
0
27 Oct 2021
Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory
T. Chen
Guan-Horng Liu
Evangelos A. Theodorou
DiffM
OT
174
165
0
21 Oct 2021
Bilateral Denoising Diffusion Models
Max W. Y. Lam
Jun Wang
Rongjie Huang
Dan Su
Dong Yu
DiffM
27
42
0
26 Aug 2021
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis
Patrick Esser
Robin Rombach
A. Blattmann
Bjorn Ommer
DiffM
38
156
0
19 Aug 2021
Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network
Zhibin Duan
Dongsheng Wang
Bo Chen
Chaojie Wang
Wenchao Chen
Yewen Li
Jie Ren
Mingyuan Zhou
BDL
37
38
0
30 Jun 2021
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
41
274
0
29 Jun 2021
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
16
659
0
10 Jun 2021
On Training Sample Memorization: Lessons from Benchmarking Generative Modeling with a Large-scale Competition
C. Bai
Hsuan-Tien Lin
Colin Raffel
Wendy Kan
18
34
0
06 Jun 2021
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
36
10
0
10 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
481
0
08 Mar 2021
Greedy Hierarchical Variational Autoencoders for Large-Scale Video Prediction
Bohan Wu
Suraj Nair
Roberto Martin-Martin
Li Fei-Fei
Chelsea Finn
DRL
27
99
0
06 Mar 2021
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
56
337
0
20 Nov 2020
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
26
9
0
26 Oct 2020
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
17
39
0
25 Oct 2020
A Quaternion-Valued Variational Autoencoder
Eleonora Grassucci
Danilo Comminiello
A. Uncini
DRL
28
21
0
22 Oct 2020
Conditional Generative Modeling via Learning the Latent Space
Sameera Ramasinghe
Kanchana Ranasinghe
Salman Khan
Nick Barnes
Stephen Gould
BDL
31
9
0
07 Oct 2020
Self-Supervised Variational Auto-Encoders
Ioannis Gatopoulos
Jakub M. Tomczak
32
13
0
05 Oct 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
42
50
0
16 Jul 2020
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression
Rianne van den Berg
A. Gritsenko
Mostafa Dehghani
C. Sønderby
Tim Salimans
27
59
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
118
17,042
0
19 Jun 2020
Capturing Label Characteristics in VAEs
Thomas Joy
Sebastian M. Schmon
Philip Torr
N. Siddharth
Tom Rainforth
CML
DRL
30
43
0
17 Jun 2020
1
2
Next