ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02102
  4. Cited By
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling

BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling

6 February 2019
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
    BDL
    DRL
ArXivPDFHTML

Papers citing "BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling"

14 / 64 papers shown
Title
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
118
17,084
0
19 Jun 2020
Capturing Label Characteristics in VAEs
Capturing Label Characteristics in VAEs
Thomas Joy
Sebastian M. Schmon
Philip Torr
N. Siddharth
Tom Rainforth
CML
DRL
30
43
0
17 Jun 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Learning Discrete Distributions by Dequantization
Learning Discrete Distributions by Dequantization
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
DRL
34
31
0
30 Jan 2020
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
Bin Dai
Ziyu Wang
David Wipf
DRL
24
75
0
23 Dec 2019
HiLLoC: Lossless Image Compression with Hierarchical Latent Variable
  Models
HiLLoC: Lossless Image Compression with Hierarchical Latent Variable Models
James Townsend
Thomas Bird
Julius Kunze
David Barber
BDL
VLM
21
56
0
20 Dec 2019
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
James Lucas
George Tucker
Roger C. Grosse
Mohammad Norouzi
CoGe
DRL
38
179
0
06 Nov 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a
  Latent Variable Model
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
30
372
0
01 Jul 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
32
14
0
31 May 2019
A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities
A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities
Simon A. A. Kohl
Bernardino Romera-Paredes
Klaus H. Maier-Hein
Danilo Jimenez Rezende
S. M. Ali Eslami
Pushmeet Kohli
Andrew Zisserman
Olaf Ronneberger
BDL
27
88
0
30 May 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
33
198
0
24 May 2019
Improved Conditional VRNNs for Video Prediction
Improved Conditional VRNNs for Video Prediction
Lluis Castrejon
Nicolas Ballas
Aaron Courville
VGen
DRL
21
161
0
27 Apr 2019
Context-encoding Variational Autoencoder for Unsupervised Anomaly
  Detection
Context-encoding Variational Autoencoder for Unsupervised Anomaly Detection
David Zimmerer
Simon A. A. Kohl
Jens Petersen
Fabian Isensee
Klaus H. Maier-Hein
DRL
19
128
0
14 Dec 2018
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
272
2,552
0
25 Jan 2016
Previous
12