ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.00275
  4. Cited By
Flow++: Improving Flow-Based Generative Models with Variational
  Dequantization and Architecture Design

Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design

1 February 2019
Jonathan Ho
Xi Chen
A. Srinivas
Yan Duan
Pieter Abbeel
    DRL
ArXivPDFHTML

Papers citing "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design"

50 / 113 papers shown
Title
Benchmarking Generative Latent Variable Models for Speech
Benchmarking Generative Latent Variable Models for Speech
Jakob Drachmann Havtorn
Lasse Borgholt
Søren Hauberg
J. Frellsen
Lars Maaløe
31
3
0
22 Feb 2022
CITRIS: Causal Identifiability from Temporal Intervened Sequences
CITRIS: Causal Identifiability from Temporal Intervened Sequences
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
46
101
0
07 Feb 2022
Ultrasound Speckle Suppression and Denoising using MRI-derived
  Normalizing Flow Priors
Ultrasound Speckle Suppression and Denoising using MRI-derived Normalizing Flow Priors
Vincent van de Schaft
Ruud J. G. van Sloun
OOD
MedIm
26
6
0
24 Dec 2021
Forward Operator Estimation in Generative Models with Kernel Transfer
  Operators
Forward Operator Estimation in Generative Models with Kernel Transfer Operators
Z. Huang
Rudrasis Chakraborty
Vikas Singh
GAN
16
3
0
01 Dec 2021
Resampling Base Distributions of Normalizing Flows
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
30
32
0
29 Oct 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
34
21
0
21 Oct 2021
PixelPyramids: Exact Inference Models from Lossless Image Pyramids
PixelPyramids: Exact Inference Models from Lossless Image Pyramids
Shweta Mahajan
Stefan Roth
TPM
12
2
0
17 Oct 2021
Diffusion Normalizing Flow
Diffusion Normalizing Flow
Qinsheng Zhang
Yongxin Chen
DiffM
35
87
0
14 Oct 2021
Focus on Impact: Indoor Exploration with Intrinsic Motivation
Focus on Impact: Indoor Exploration with Intrinsic Motivation
Roberto Bigazzi
Federico Landi
S. Cascianelli
Lorenzo Baraldi
Marcella Cornia
Rita Cucchiara
OffRL
29
13
0
14 Sep 2021
Conditional Synthetic Data Generation for Robust Machine Learning
  Applications with Limited Pandemic Data
Conditional Synthetic Data Generation for Robust Machine Learning Applications with Limited Pandemic Data
Hari Prasanna Das
Ryan Tran
Japjot Singh
Xiangyu Yue
G. Tison
Alberto L. Sangiovanni-Vincentelli
C. Spanos
OOD
MedIm
57
51
0
14 Sep 2021
MRI Reconstruction Using Deep Energy-Based Model
MRI Reconstruction Using Deep Energy-Based Model
Yu Guan
Zongjiang Tu
Shanshan Wang
Qiegen Liu
Yuhao Wang
Dong Liang
DiffM
MedIm
31
13
0
07 Sep 2021
Deep Generative Modeling for Protein Design
Deep Generative Modeling for Protein Design
Alexey Strokach
Philip M. Kim
AI4CE
179
90
0
31 Aug 2021
Normalizing field flows: Solving forward and inverse stochastic
  differential equations using physics-informed flow models
Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow models
Ling Guo
Hao Wu
Tao Zhou
AI4CE
14
45
0
30 Aug 2021
Bilateral Denoising Diffusion Models
Bilateral Denoising Diffusion Models
Max W. Y. Lam
Jun Wang
Rongjie Huang
Dan Su
Dong Yu
DiffM
29
42
0
26 Aug 2021
CDCGen: Cross-Domain Conditional Generation via Normalizing Flows and
  Adversarial Training
CDCGen: Cross-Domain Conditional Generation via Normalizing Flows and Adversarial Training
Hari Prasanna Das
Ryan Tran
Japjot Singh
Yu-Wen Lin
C. Spanos
OOD
21
11
0
25 Aug 2021
Hierarchical Conditional Flow: A Unified Framework for Image
  Super-Resolution and Image Rescaling
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling
Christos Sakaridis
Andreas Lugmayr
Peng Sun
Martin Danelljan
Luc Van Gool
Radu Timofte
48
102
0
11 Aug 2021
Featurized Density Ratio Estimation
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
22
22
0
05 Jul 2021
Variational Diffusion Models
Variational Diffusion Models
Diederik P. Kingma
Tim Salimans
Ben Poole
Jonathan Ho
DiffM
88
1,063
0
01 Jul 2021
Transflower: probabilistic autoregressive dance generation with
  multimodal attention
Transflower: probabilistic autoregressive dance generation with multimodal attention
Guillermo Valle Pérez
G. Henter
Jonas Beskow
A. Holzapfel
Pierre-Yves Oudeyer
Simon Alexanderson
30
42
0
25 Jun 2021
Low-rank Characteristic Tensor Density Estimation Part II: Compression
  and Latent Density Estimation
Low-rank Characteristic Tensor Density Estimation Part II: Compression and Latent Density Estimation
Magda Amiridi
Nikos Kargas
N. Sidiropoulos
21
10
0
20 Jun 2021
A Flow-Based Neural Network for Time Domain Speech Enhancement
A Flow-Based Neural Network for Time Domain Speech Enhancement
Martin Strauss
B. Edler
20
33
0
16 Jun 2021
Conditional Variational Autoencoder with Adversarial Learning for
  End-to-End Text-to-Speech
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
Jaehyeon Kim
Jungil Kong
Juhee Son
DRL
86
843
0
11 Jun 2021
Soft Truncation: A Universal Training Technique of Score-based Diffusion
  Model for High Precision Score Estimation
Soft Truncation: A Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation
Dongjun Kim
Seung-Jae Shin
Kyungwoo Song
Wanmo Kang
Il-Chul Moon
34
90
0
10 Jun 2021
Tensor feature hallucination for few-shot learning
Tensor feature hallucination for few-shot learning
Michalis Lazarou
Tania Stathaki
Yannis Avrithis
37
22
0
09 Jun 2021
Cascaded Diffusion Models for High Fidelity Image Generation
Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan Ho
Chitwan Saharia
William Chan
David J. Fleet
Mohammad Norouzi
Tim Salimans
78
1,180
0
30 May 2021
E(n) Equivariant Normalizing Flows
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras
Emiel Hoogeboom
F. Fuchs
Ingmar Posner
Max Welling
BDL
37
169
0
19 May 2021
Invertible Image Signal Processing
Invertible Image Signal Processing
Yazhou Xing
Zian Qian
Qifeng Chen
26
112
0
28 Mar 2021
Spatial Dependency Networks: Neural Layers for Improved Generative Image
  Modeling
Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling
DJordje Miladinović
Aleksandar Stanić
Stefan Bauer
Jürgen Schmidhuber
J. M. Buhmann
DRL
13
9
0
16 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
483
0
08 Mar 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
60
3,541
0
18 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
213
396
0
10 Feb 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
27
49
0
09 Feb 2021
Colorization Transformer
Colorization Transformer
Manoj Kumar
Dirk Weissenborn
Nal Kalchbrenner
ViT
232
156
0
08 Feb 2021
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
P. Jaini
Didrik Nielsen
Max Welling
BDL
43
10
0
04 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
64
626
0
22 Jan 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
73
6,113
0
26 Nov 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
56
339
0
20 Nov 2020
Testing for Typicality with Respect to an Ensemble of Learned
  Distributions
Testing for Typicality with Respect to an Ensemble of Learned Distributions
F. Laine
Claire Tomlin
11
0
0
11 Nov 2020
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Jason J. Yu
Konstantinos G. Derpanis
Marcus A. Brubaker
TPM
32
41
0
26 Oct 2020
Reducing the Computational Cost of Deep Generative Models with Binary
  Neural Networks
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
26
9
0
26 Oct 2020
Audio Dequantization for High Fidelity Audio Generation in Flow-based
  Neural Vocoder
Audio Dequantization for High Fidelity Audio Generation in Flow-based Neural Vocoder
Hyun-Wook Yoon
Sang-Hoon Lee
Hyeong-Rae Noh
Seong-Whan Lee
20
11
0
16 Aug 2020
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless
  Compression
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression
Rianne van den Berg
A. Gritsenko
Mostafa Dehghani
C. Sønderby
Tim Salimans
27
59
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
118
17,042
0
19 Jun 2020
Categorical Normalizing Flows via Continuous Transformations
Categorical Normalizing Flows via Continuous Transformations
Phillip Lippe
E. Gavves
BDL
21
43
0
17 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural
  Networks
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
Self-supervised Learning: Generative or Contrastive
Self-supervised Learning: Generative or Contrastive
Xiao Liu
Fanjin Zhang
Zhenyu Hou
Zhaoyu Wang
Li Mian
Jing Zhang
Jie Tang
SSL
52
1,587
0
15 Jun 2020
SoftFlow: Probabilistic Framework for Normalizing Flow on Manifolds
SoftFlow: Probabilistic Framework for Normalizing Flow on Manifolds
Hyeongju Kim
Hyeonseung Lee
Woohyun Kang
Joun Yeop Lee
N. Kim
3DPC
25
114
0
08 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
25
28
0
02 Jun 2020
A Survey of Deep Learning for Scientific Discovery
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
40
120
0
26 Mar 2020
Previous
123
Next