Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08431
Cited By
Provable Smoothness Guarantees for Black-Box Variational Inference
24 January 2019
Justin Domke
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provable Smoothness Guarantees for Black-Box Variational Inference"
25 / 25 papers shown
Title
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
83
1
0
03 Jun 2024
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Yiheng Jiang
Sinho Chewi
Aram-Alexandre Pooladian
114
8
0
05 Dec 2023
Provable Gradient Variance Guarantees for Black-Box Variational Inference
Justin Domke
DRL
42
21
0
19 Jun 2019
Variance reduction properties of the reparameterization trick
Ming Xu
M. Quiroz
Robert Kohn
Scott A. Sisson
AAML
66
67
0
27 Sep 2018
Quasi-Monte Carlo Variational Inference
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
BDL
69
58
0
04 Jul 2018
Yes, but Did It Work?: Evaluating Variational Inference
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
52
136
0
07 Feb 2018
Asynchronous Stochastic Variational Inference
S. Mohamad
A. Bouchachia
M. S. Mouchaweh
35
8
0
12 Jan 2018
Boosting Variational Inference: an Optimization Perspective
Francesco Locatello
Rajiv Khanna
Joydeep Ghosh
Gunnar Rätsch
51
36
0
05 Aug 2017
Concentration of tempered posteriors and of their variational approximations
Pierre Alquier
James Ridgway
66
124
0
28 Jun 2017
Fast Black-box Variational Inference through Stochastic Trust-Region Optimization
Jeffrey Regier
Michael I. Jordan
Jon D. McAuliffe
34
27
0
07 Jun 2017
Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Mohammad Emtiyaz Khan
Wu Lin
BDL
47
135
0
13 Mar 2017
Boosting Variational Inference
Fangjian Guo
Xiangyu Wang
Kai Fan
Tamara Broderick
David B. Dunson
BDL
108
76
0
17 Nov 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
233
3,206
0
15 Jun 2016
Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization
Tianbao Yang
Qihang Lin
Zhe Li
59
122
0
12 Apr 2016
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
106
717
0
02 Mar 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
264
4,787
0
04 Jan 2016
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
Mohammad Emtiyaz Khan
Reza Babanezhad
Wu Lin
Mark Schmidt
Masashi Sugiyama
51
49
0
31 Oct 2015
Fast Second-Order Stochastic Backpropagation for Variational Inference
Kai Fan
Ziteng Wang
J. Beck
James T. Kwok
Katherine A. Heller
ODL
BDL
DRL
46
46
0
09 Sep 2015
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
135
1,058
0
06 Mar 2015
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
134
1,166
0
31 Dec 2013
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
450
16,940
0
20 Dec 2013
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
Saeed Ghadimi
Guanghui Lan
ODL
120
1,549
0
22 Sep 2013
Automated Variational Inference in Probabilistic Programming
David Wingate
T. Weber
BDL
TPM
85
138
0
07 Jan 2013
Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression
Tim Salimans
David A. Knowles
110
252
0
28 Jun 2012
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
164
768
0
26 Sep 2011
1