Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.11118
Cited By
Reconciling modern machine learning practice and the bias-variance trade-off
28 December 2018
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reconciling modern machine learning practice and the bias-variance trade-off"
50 / 315 papers shown
Title
Efficient Quantum State Sample Tomography with Basis-dependent Neural-networks
Alistair W. R. Smith
Johnnie Gray
M. S. Kim
11
28
0
16 Sep 2020
Minimum discrepancy principle strategy for choosing
k
k
k
in
k
k
k
-NN regression
Yaroslav Averyanov
Alain Celisse
18
0
0
20 Aug 2020
Prevalence of Neural Collapse during the terminal phase of deep learning training
Vardan Papyan
Xuemei Han
D. Donoho
35
549
0
18 Aug 2020
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
49
95
0
25 Jul 2020
What shapes feature representations? Exploring datasets, architectures, and training
Katherine L. Hermann
Andrew Kyle Lampinen
OOD
23
153
0
22 Jun 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
28
3
0
19 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Interpolation and Learning with Scale Dependent Kernels
Nicolò Pagliana
Alessandro Rudi
E. De Vito
Lorenzo Rosasco
44
8
0
17 Jun 2020
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
21
33
0
16 Jun 2020
On the training dynamics of deep networks with
L
2
L_2
L
2
regularization
Aitor Lewkowycz
Guy Gur-Ari
44
53
0
15 Jun 2020
Assumption-lean inference for generalised linear model parameters
S. Vansteelandt
O. Dukes
CML
27
49
0
15 Jun 2020
Double Double Descent: On Generalization Errors in Transfer Learning between Linear Regression Tasks
Yehuda Dar
Richard G. Baraniuk
36
19
0
12 Jun 2020
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Simon Lacoste-Julien
Nicolas Le Roux
26
8
0
11 Jun 2020
Double Descent Risk and Volume Saturation Effects: A Geometric Perspective
Prasad Cheema
M. Sugiyama
14
3
0
08 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
45
98
0
05 Jun 2020
Machine Learning-Based Unbalance Detection of a Rotating Shaft Using Vibration Data
Oliver Mey
Willi Neudeck
André Schneider
Olaf Enge-Rosenblatt
6
28
0
26 May 2020
Is deeper better? It depends on locality of relevant features
Takashi Mori
Masahito Ueda
OOD
25
4
0
26 May 2020
Gradient Monitored Reinforcement Learning
Mohammed Sharafath Abdul Hameed
Gavneet Singh Chadha
Andreas Schwung
S. Ding
33
10
0
25 May 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
41
149
0
16 May 2020
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
152
371
0
09 May 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
34
77
0
07 May 2020
Understanding and Improving Information Transfer in Multi-Task Learning
Sen Wu
Hongyang R. Zhang
Christopher Ré
18
154
0
02 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Going in circles is the way forward: the role of recurrence in visual inference
R. S. V. Bergen
N. Kriegeskorte
17
82
0
26 Mar 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
93
152
0
02 Mar 2020
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
Chaoyue Liu
Libin Zhu
M. Belkin
ODL
17
247
0
29 Feb 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
47
785
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
37
69
0
25 Feb 2020
Coherent Gradients: An Approach to Understanding Generalization in Gradient Descent-based Optimization
S. Chatterjee
ODL
OOD
11
48
0
25 Feb 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
25
165
0
21 Feb 2020
Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nyström method
Michal Derezinski
Rajiv Khanna
Michael W. Mahoney
29
10
0
21 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
639
0
20 Feb 2020
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
31
82
0
19 Feb 2020
Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data
Charles H. Martin
Tongsu Peng
Peng
Michael W. Mahoney
36
101
0
17 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
30
15
0
12 Feb 2020
Sparse Recovery With Non-Linear Fourier Features
Ayça Özçelikkale
19
5
0
12 Feb 2020
Asymptotic errors for convex penalized linear regression beyond Gaussian matrices
Cédric Gerbelot
A. Abbara
Florent Krzakala
34
16
0
11 Feb 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
Cengiz Pehlevan
146
201
0
07 Feb 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
From Learning to Meta-Learning: Reduced Training Overhead and Complexity for Communication Systems
Osvaldo Simeone
Sangwoo Park
Joonhyuk Kang
AI4CE
31
62
0
05 Jan 2020
Machine Learning from a Continuous Viewpoint
E. Weinan
Chao Ma
Lei Wu
27
102
0
30 Dec 2019
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
25
168
0
19 Dec 2019
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
27
77
0
10 Dec 2019
In Defense of Uniform Convergence: Generalization via derandomization with an application to interpolating predictors
Jeffrey Negrea
Gintare Karolina Dziugaite
Daniel M. Roy
AI4CE
40
64
0
09 Dec 2019
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
36
145
0
13 Nov 2019
Rate-Regularization and Generalization in VAEs
Alican Bozkurt
Babak Esmaeili
Jean-Baptiste Tristan
Dana H. Brooks
Jennifer G. Dy
Jan-Willem van de Meent
DRL
25
7
0
11 Nov 2019
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Cinjon Resnick
Abhinav Gupta
Jakob N. Foerster
Andrew M. Dai
Kyunghyun Cho
20
51
0
24 Oct 2019
Predicting materials properties without crystal structure: Deep representation learning from stoichiometry
Rhys E. A. Goodall
A. Lee
18
253
0
01 Oct 2019
Overparameterized Neural Networks Implement Associative Memory
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
BDL
35
71
0
26 Sep 2019
Finite Depth and Width Corrections to the Neural Tangent Kernel
Boris Hanin
Mihai Nica
MDE
27
150
0
13 Sep 2019
Previous
1
2
3
4
5
6
7
Next