Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.11118
Cited By
Reconciling modern machine learning practice and the bias-variance trade-off
28 December 2018
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reconciling modern machine learning practice and the bias-variance trade-off"
50 / 313 papers shown
Title
Deep multi-task mining Calabi-Yau four-folds
Harold Erbin
Riccardo Finotello
Robin Schneider
M. Tamaazousti
35
17
0
04 Aug 2021
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite Width Neural Networks
Adityanarayanan Radhakrishnan
George Stefanakis
M. Belkin
Caroline Uhler
30
25
0
31 Jul 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
Reasoning-Modulated Representations
Petar Velivcković
Matko Bovsnjak
Thomas Kipf
Alexander Lerchner
R. Hadsell
Razvan Pascanu
Charles Blundell
OCL
OOD
SSL
13
15
0
19 Jul 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
23
13
0
19 Jul 2021
A Theory of PAC Learnability of Partial Concept Classes
N. Alon
Steve Hanneke
R. Holzman
Shay Moran
25
50
0
18 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
412
0
14 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
32
43
0
04 Jul 2021
A Mechanism for Producing Aligned Latent Spaces with Autoencoders
Saachi Jain
Adityanarayanan Radhakrishnan
Caroline Uhler
21
9
0
29 Jun 2021
Jitter: Random Jittering Loss Function
Zhicheng Cai
Chenglei Peng
S. Du
21
3
0
25 Jun 2021
Training Graph Neural Networks with 1000 Layers
Guohao Li
Matthias Muller
Guohao Li
V. Koltun
GNN
AI4CE
51
235
0
14 Jun 2021
Pre-Trained Models: Past, Present and Future
Xu Han
Zhengyan Zhang
Ning Ding
Yuxian Gu
Xiao Liu
...
Jie Tang
Ji-Rong Wen
Jinhui Yuan
Wayne Xin Zhao
Jun Zhu
AIFin
MQ
AI4MH
40
815
0
14 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Neural Symbolic Regression that Scales
Luca Biggio
Tommaso Bendinelli
Alexander Neitz
Aurelien Lucchi
Giambattista Parascandolo
54
170
0
11 Jun 2021
Double Descent and Other Interpolation Phenomena in GANs
Lorenzo Luzi
Yehuda Dar
Richard Baraniuk
26
5
0
07 Jun 2021
On Memorization in Probabilistic Deep Generative Models
G. V. D. Burg
Christopher K. I. Williams
TDI
25
59
0
06 Jun 2021
Towards an Understanding of Benign Overfitting in Neural Networks
Zhu Li
Zhi-Hua Zhou
Arthur Gretton
MLT
33
35
0
06 Jun 2021
Fundamental tradeoffs between memorization and robustness in random features and neural tangent regimes
Elvis Dohmatob
25
9
0
04 Jun 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
13
213
0
26 May 2021
Relative stability toward diffeomorphisms indicates performance in deep nets
Leonardo Petrini
Alessandro Favero
Mario Geiger
M. Wyart
OOD
38
15
0
06 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
27
194
0
06 May 2021
AdaBoost and robust one-bit compressed sensing
Geoffrey Chinot
Felix Kuchelmeister
Matthias Löffler
Sara van de Geer
35
5
0
05 May 2021
Deep limits and cut-off phenomena for neural networks
B. Avelin
A. Karlsson
AI4CE
38
2
0
21 Apr 2021
Fundamental Challenges in Deep Learning for Stiff Contact Dynamics
Mihir Parmar
Mathew Halm
Michael Posa
29
36
0
29 Mar 2021
Embracing the Disharmony in Medical Imaging: A Simple and Effective Framework for Domain Adaptation
Rongguang Wang
Pratik Chaudhari
Christos Davatzikos
OOD
42
49
0
23 Mar 2021
The Shape of Learning Curves: a Review
T. Viering
Marco Loog
18
122
0
19 Mar 2021
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy
Lucas Liebenwein
Cenk Baykal
Brandon Carter
David K Gifford
Daniela Rus
AAML
40
71
0
04 Mar 2021
Slow-Growing Trees
Philippe Goulet Coulombe
31
1
0
02 Mar 2021
Provable Super-Convergence with a Large Cyclical Learning Rate
Samet Oymak
33
12
0
22 Feb 2021
Learning curves of generic features maps for realistic datasets with a teacher-student model
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
35
135
0
16 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Learning Curve Theory
Marcus Hutter
140
59
0
08 Feb 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
130
167
0
29 Jan 2021
Analysis of the Scalability of a Deep-Learning Network for Steganography "Into the Wild"
Hugo Ruiz
Marc Chaumont
Mehdi Yedroudj
A. Amara
Frédéric Comby
Gérard Subsol
29
9
0
29 Dec 2020
Applying Deutsch's concept of good explanations to artificial intelligence and neuroscience -- an initial exploration
Daniel C. Elton
23
4
0
16 Dec 2020
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
35
50
0
16 Dec 2020
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
33
48
0
14 Dec 2020
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
39
93
0
04 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
44
24
0
27 Oct 2020
Are wider nets better given the same number of parameters?
A. Golubeva
Behnam Neyshabur
Guy Gur-Ari
27
44
0
27 Oct 2020
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
J. Rocks
Pankaj Mehta
18
41
0
26 Oct 2020
Precise High-Dimensional Asymptotics for Quantifying Heterogeneous Transfers
Fan Yang
Hongyang R. Zhang
Sen Wu
Christopher Ré
Weijie J. Su
58
10
0
22 Oct 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
28
62
0
21 Oct 2020
For self-supervised learning, Rationality implies generalization, provably
Yamini Bansal
Gal Kaplun
Boaz Barak
OOD
SSL
58
22
0
16 Oct 2020
Regularizing Neural Networks via Adversarial Model Perturbation
Yaowei Zheng
Richong Zhang
Yongyi Mao
AAML
30
95
0
10 Oct 2020
Effective Regularization Through Loss-Function Metalearning
Santiago Gonzalez
Risto Miikkulainen
29
5
0
02 Oct 2020
Small Data, Big Decisions: Model Selection in the Small-Data Regime
J. Bornschein
Francesco Visin
Simon Osindero
15
36
0
26 Sep 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
22
133
0
22 Sep 2020
Efficient Quantum State Sample Tomography with Basis-dependent Neural-networks
Alistair W. R. Smith
Johnnie Gray
M. S. Kim
11
28
0
16 Sep 2020
Minimum discrepancy principle strategy for choosing
k
k
k
in
k
k
k
-NN regression
Yaroslav Averyanov
Alain Celisse
18
0
0
20 Aug 2020
Previous
1
2
3
4
5
6
7
Next