ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.08402
19
49

Assumption-lean inference for generalised linear model parameters

15 June 2020
S. Vansteelandt
O. Dukes
    CML
ArXivPDFHTML
Abstract

Inference for the parameters indexing generalised linear models is routinely based on the assumption that the model is correct and a priori specified. This is unsatisfactory because the chosen model is usually the result of a data-adaptive model selection process, which may induce excess uncertainty that is not usually acknowledged. Moreover, the assumptions encoded in the chosen model rarely represent some a priori known, ground truth, making standard inferences prone to bias, but also failing to give a pure reflection of the information that is contained in the data. Inspired by developments on assumption-free inference for so-called projection parameters, we here propose novel nonparametric definitions of main effect estimands and effect modification estimands. These reduce to standard main effect and effect modification parameters in generalised linear models when these models are correctly specified, but have the advantage that they continue to capture respectively the primary (conditional) association between two variables, or the degree to which two variables interact (in a statistical sense) in their effect on outcome, even when these models are misspecified. We achieve an assumption-lean inference for these estimands (and thus for the underlying regression parameters) by deriving their influence curve under the nonparametric model and invoking flexible data-adaptive (e.g., machine learning) procedures.

View on arXiv
Comments on this paper