ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.12857
34
49

Embracing the Disharmony in Medical Imaging: A Simple and Effective Framework for Domain Adaptation

23 March 2021
Rongguang Wang
Pratik Chaudhari
Christos Davatzikos
    OOD
ArXivPDFHTML
Abstract

Domain shift, the mismatch between training and testing data characteristics, causes significant degradation in the predictive performance in multi-source imaging scenarios. In medical imaging, the heterogeneity of population, scanners and acquisition protocols at different sites presents a significant domain shift challenge and has limited the widespread clinical adoption of machine learning models. Harmonization methods which aim to learn a representation of data invariant to these differences are the prevalent tools to address domain shift, but they typically result in degradation of predictive accuracy. This paper takes a different perspective of the problem: we embrace this disharmony in data and design a simple but effective framework for tackling domain shift. The key idea, based on our theoretical arguments, is to build a pretrained classifier on the source data and adapt this model to new data. The classifier can be fine-tuned for intra-site domain adaptation. We can also tackle situations where we do not have access to ground-truth labels on target data; we show how one can use auxiliary tasks for adaptation; these tasks employ covariates such as age, gender and race which are easy to obtain but nevertheless correlated to the main task. We demonstrate substantial improvements in both intra-site domain adaptation and inter-site domain generalization on large-scale real-world 3D brain MRI datasets for classifying Alzheimer's disease and schizophrenia.

View on arXiv
Comments on this paper