ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.04218
  4. Cited By
Learning Controllable Fair Representations
v1v2v3 (latest)

Learning Controllable Fair Representations

11 December 2018
Jiaming Song
Pratyusha Kalluri
Aditya Grover
Shengjia Zhao
Stefano Ermon
    FaML
ArXiv (abs)PDFHTML

Papers citing "Learning Controllable Fair Representations"

24 / 24 papers shown
Title
Fair Representation Learning for Continuous Sensitive Attributes using Expectation of Integral Probability Metrics
Fair Representation Learning for Continuous Sensitive Attributes using Expectation of Integral Probability Metrics
Insung Kong
Kunwoong Kim
Yongdai Kim
FaML
172
1
0
09 May 2025
Uncertainty Autoencoders: Learning Compressed Representations via
  Variational Information Maximization
Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
Aditya Grover
Stefano Ermon
56
53
0
26 Dec 2018
The Information Autoencoding Family: A Lagrangian Perspective on Latent
  Variable Generative Models
The Information Autoencoding Family: A Lagrangian Perspective on Latent Variable Generative Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRLGAN
33
20
0
18 Jun 2018
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
382
684
0
17 Feb 2018
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
85
447
0
07 Jun 2017
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CMLBDL
206
747
0
24 May 2017
Optimized Data Pre-Processing for Discrimination Prevention
Optimized Data Pre-Processing for Discrimination Prevention
Flavio du Pin Calmon
Dennis L. Wei
Karthikeyan N. Ramamurthy
Kush R. Varshney
53
60
0
11 Apr 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,558
0
31 Mar 2017
Towards Deeper Understanding of Variational Autoencoding Models
Towards Deeper Understanding of Variational Autoencoding Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
76
158
0
28 Feb 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
126
1,726
0
01 Dec 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRLSSLGAN
152
676
0
08 Nov 2016
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
302
2,120
0
24 Oct 2016
Equality of Opportunity in Supervised Learning
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
230
4,329
0
07 Oct 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
121
1,775
0
19 Sep 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDLDRL
142
1,823
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
275
78
0
26 May 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSegGAN
479
2,573
0
25 Jan 2016
Censoring Representations with an Adversary
Censoring Representations with an Adversary
Harrison Edwards
Amos Storkey
AAMLFaML
66
506
0
18 Nov 2015
The Variational Fair Autoencoder
The Variational Fair Autoencoder
Christos Louizos
Kevin Swersky
Yujia Li
Max Welling
R. Zemel
DRL
223
634
0
03 Nov 2015
Fairness Constraints: Mechanisms for Fair Classification
Fairness Constraints: Mechanisms for Fair Classification
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
133
49
0
19 Jul 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
318
4,197
0
21 May 2015
On the relation between accuracy and fairness in binary classification
On the relation between accuracy and fairness in binary classification
Indrė Žliobaitė
FaML
73
196
0
21 May 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
233
2,363
0
15 May 2008
1