ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08658
28
155

Towards Deeper Understanding of Variational Autoencoding Models

28 February 2017
Shengjia Zhao
Jiaming Song
Stefano Ermon
    DRL
ArXivPDFHTML
Abstract

We propose a new family of optimization criteria for variational auto-encoding models, generalizing the standard evidence lower bound. We provide conditions under which they recover the data distribution and learn latent features, and formally show that common issues such as blurry samples and uninformative latent features arise when these conditions are not met. Based on these new insights, we propose a new sequential VAE model that can generate sharp samples on the LSUN image dataset based on pixel-wise reconstruction loss, and propose an optimization criterion that encourages unsupervised learning of informative latent features.

View on arXiv
Comments on this paper