144
49
v1v2v3v4v5 (latest)

Fairness Constraints: Mechanisms for Fair Classification

Abstract

Algorithmic decision making systems are ubiquitous across a wide variety of online as well as offline services. These systems rely on complex learning methods and vast amounts of data to optimize the service functionality, satisfaction of the end user and profitability. However, there is a growing concern that these automated decisions can lead, even in the absence of intent, to a lack of fairness, i.e., their outcomes can disproportionately hurt (or, benefit) particular groups of people sharing one or more sensitive attributes (e.g., race, sex). In this paper, we introduce a flexible mechanism to design fair classifiers by leveraging a novel intuitive measure of decision boundary (un)fairness. We instantiate this mechanism with two well-known classifiers, logistic regression and support vector machines, and show on real-world data that our mechanism allows for a fine-grained control on the degree of fairness, often at a small cost in terms of accuracy.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.