Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.03973
Cited By
Bayesian Layers: A Module for Neural Network Uncertainty
10 December 2018
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Layers: A Module for Neural Network Uncertainty"
31 / 31 papers shown
Title
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
94
0
0
25 Apr 2025
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
Yibin Wang
Haizhou Shi
Ligong Han
Dimitris N. Metaxas
Hao Wang
BDL
UQLM
116
7
0
28 Jan 2025
Multi-Fidelity Bayesian Neural Network for Uncertainty Quantification in Transonic Aerodynamic Loads
Andrea Vaiuso
Gabriele Immordino
Marcello Righi
A. Ronch
AI4CE
48
0
0
08 Jul 2024
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Oleksandr Balabanov
Hampus Linander
UQCV
36
14
0
19 Feb 2024
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
41
20
0
09 Oct 2023
Block-local learning with probabilistic latent representations
David Kappel
Khaleelulla Khan Nazeer
Cabrel Teguemne Fokam
Christian Mayr
Anand Subramoney
24
4
0
24 May 2023
Bayesian Neural Network Language Modeling for Speech Recognition
Boyang Xue
Shoukang Hu
Junhao Xu
Mengzhe Geng
Xunying Liu
Helen M. Meng
UQCV
BDL
44
14
0
28 Aug 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
30
2
0
27 May 2022
Application of belief functions to medical image segmentation: A review
Ling Huang
S. Ruan
Thierry Denoeux
EDL
MedIm
27
30
0
03 May 2022
Hyperbolic Image Segmentation
Mina Ghadimi Atigh
Julian Schoep
Erman Acar
Nanne van Noord
Pascal Mettes
48
86
0
11 Mar 2022
Lymphoma segmentation from 3D PET-CT images using a deep evidential network
Ling Huang
S. Ruan
P. Decazes
Thierry Denoeux
3DPC
MedIm
41
37
0
31 Jan 2022
Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies
Vivian Lai
Chacha Chen
Q. V. Liao
Alison Smith-Renner
Chenhao Tan
33
186
0
21 Dec 2021
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
34
9
0
08 Oct 2021
TyXe: Pyro-based Bayesian neural nets for Pytorch
H. Ritter
Theofanis Karaletsos
OOD
MU
BDL
31
6
0
01 Oct 2021
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit 3D Representations
Jianxiong Shen
Adria Ruiz
Antonio Agudo
Francesc Moreno-Noguer
BDL
36
68
0
05 Sep 2021
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
20
7
0
30 Jun 2021
Graceful Degradation and Related Fields
J. Dymond
31
4
0
21 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression
David Rügamer
Chris Kolb
Cornelius Fritz
Florian Pfisterer
Philipp Kopper
...
Dominik Thalmeier
Philipp F. M. Baumann
Lucas Kook
Nadja Klein
Christian L. Müller
BDL
16
19
0
06 Apr 2021
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems
Martin Mladenov
Chih-Wei Hsu
Vihan Jain
Eugene Ie
Christopher Colby
Nicolas Mayoraz
H. Pham
Dustin Tran
Ivan Vendrov
Craig Boutilier
BDL
15
31
0
14 Mar 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
21
26
0
22 Oct 2020
Quantifying and Leveraging Predictive Uncertainty for Medical Image Assessment
Florin-Cristian Ghesu
Bogdan Georgescu
Awais Mansoor
Y. Yoo
Eli Gibson
...
Ramandeep Singh
S. Digumarthy
M. Kalra
Sasa Grbic
Dorin Comaniciu
UQCV
EDL
23
55
0
08 Jul 2020
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
UQCV
33
204
0
24 Jun 2020
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning Study
Himanshu Sharma
Elise Jennings
BDL
27
3
0
23 May 2020
Mean-Field and Kinetic Descriptions of Neural Differential Equations
Michael Herty
T. Trimborn
G. Visconti
36
6
0
07 Jan 2020
A Kings Ransom for Encryption: Ransomware Classification using Augmented One-Shot Learning and Bayesian Approximation
Amir Atapour-Abarghouei
Stephen Bonner
A. Mcgough
29
7
0
19 Aug 2019
Analyzing the Role of Model Uncertainty for Electronic Health Records
Michael W. Dusenberry
Dustin Tran
Edward Choi
Jonas Kemp
Jeremy Nixon
Ghassen Jerfel
Katherine A. Heller
Andrew M. Dai
15
117
0
10 Jun 2019
Discrete Flows: Invertible Generative Models of Discrete Data
Dustin Tran
Keyon Vafa
Kumar Krishna Agrawal
Laurent Dinh
Ben Poole
DRL
24
114
0
24 May 2019
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
268
0
13 Jun 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1