ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02633
  4. Cited By
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
v1v2 (latest)

MIWAE: Deep Generative Modelling and Imputation of Incomplete Data

6 December 2018
Pierre-Alexandre Mattei
J. Frellsen
    SyDa
ArXiv (abs)PDFHTML

Papers citing "MIWAE: Deep Generative Modelling and Imputation of Incomplete Data"

23 / 23 papers shown
Title
CACTI: Leveraging Copy Masking and Contextual Information to Improve Tabular Data Imputation
CACTI: Leveraging Copy Masking and Contextual Information to Improve Tabular Data Imputation
Aditya Gorla
Ryan Wang
Zhengtong Liu
Ulzee An
Sriram Sankararaman
32
0
0
02 Jun 2025
Robust prediction under missingness shifts
Robust prediction under missingness shifts
P. Rockenschaub
Zhicong Xian
Alireza Zamanian
Marta Piperno
Octavia-Andreea Ciora
E. Pachl
Narges Ahmidi
OOD
82
0
0
24 Jun 2024
Scalable Numerical Embeddings for Multivariate Time Series: Enhancing
  Healthcare Data Representation Learning
Scalable Numerical Embeddings for Multivariate Time Series: Enhancing Healthcare Data Representation Learning
Chun-Kai Huang
Yi-Hsien Hsieh
Ta-Jung Chien
Li-Cheng Chien
Shao-Hua Sun
T. Su
J. Kao
Che Lin
AI4TS
93
0
0
26 May 2024
DiffImpute: Tabular Data Imputation With Denoising Diffusion
  Probabilistic Model
DiffImpute: Tabular Data Imputation With Denoising Diffusion Probabilistic Model
Yizhu Wen
Kai Yi
Jing Ke
Yiqing Shen
DiffM
74
8
0
20 Mar 2024
ReMasker: Imputing Tabular Data with Masked Autoencoding
ReMasker: Imputing Tabular Data with Masked Autoencoding
Tianyu Du
Luca Melis
Ting Wang
71
19
0
25 Sep 2023
Variational Autoencoding of Dental Point Clouds
Variational Autoencoding of Dental Point Clouds
J. Z. Ye
Thomas Orkild
P. Søndergaard
Søren Hauberg
3DPC
59
0
0
20 Jul 2023
MISNN: Multiple Imputation via Semi-parametric Neural Networks
MISNN: Multiple Imputation via Semi-parametric Neural Networks
Zhiqi Bu
Zongyu Dai
Yiliang Zhang
Q. Long
62
0
0
02 May 2023
Explainable Data Imputation using Constraints
Explainable Data Imputation using Constraints
Sandeep Hans
Diptikalyan Saha
Aniya Aggarwal
57
5
0
10 May 2022
Fairness in Missing Data Imputation
Fairness in Missing Data Imputation
Yiliang Zhang
Q. Long
84
13
0
22 Oct 2021
Unsupervised domain adaptation with non-stochastic missing data
Unsupervised domain adaptation with non-stochastic missing data
Matthieu Kirchmeyer
Patrick Gallinari
A. Rakotomamonjy
Amin Mantrach
61
2
0
16 Sep 2021
Training Deep Normalizing Flow Models in Highly Incomplete Data
  Scenarios with Prior Regularization
Training Deep Normalizing Flow Models in Highly Incomplete Data Scenarios with Prior Regularization
Edgar A. Bernal
41
1
0
03 Apr 2021
Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation
Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation
Ahmed Ben Said
A. Erradi
55
37
0
12 Mar 2021
Artificial Neural Networks to Impute Rounded Zeros in Compositional Data
Artificial Neural Networks to Impute Rounded Zeros in Compositional Data
M. Templ
42
8
0
18 Dec 2020
PC-GAIN: Pseudo-label Conditional Generative Adversarial Imputation
  Networks for Incomplete Data
PC-GAIN: Pseudo-label Conditional Generative Adversarial Imputation Networks for Incomplete Data
Yufeng Wang
Dan Li
Xiang Li
Min Yang
66
67
0
16 Nov 2020
NeuMiss networks: differentiable programming for supervised learning
  with missing values
NeuMiss networks: differentiable programming for supervised learning with missing values
Marine Le Morvan
Julie Josse
Thomas Moreau
Erwan Scornet
Gaël Varoquaux
88
8
0
03 Jul 2020
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data
Chao Ma
Sebastian Tschiatschek
José Miguel Hernández-Lobato
Richard Turner
Cheng Zhang
DRLVLM
81
69
0
21 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCVBDLDRL
87
32
0
09 Jun 2020
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
  Variance Parameterization
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
92
10
0
08 Jun 2020
Minority Class Oversampling for Tabular Data with Deep Generative Models
Minority Class Oversampling for Tabular Data with Deep Generative Models
R. Camino
Christian A. Hammerschmidt
R. State
62
2
0
07 May 2020
MCFlow: Monte Carlo Flow Models for Data Imputation
MCFlow: Monte Carlo Flow Models for Data Imputation
Trevor W. Richardson
Wencheng Wu
Lei Lin
Beilei Xu
Edgar A. Bernal
OOD
80
48
0
27 Mar 2020
A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor
  Analysis
A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis
Christopher J. Urban
Daniel J. Bauer
BDL
81
33
0
22 Jan 2020
Uncertainty Quantification with Generative Models
Uncertainty Quantification with Generative Models
Vanessa Böhm
F. Lanusse
U. Seljak
72
26
0
22 Oct 2019
Generative Imputation and Stochastic Prediction
Generative Imputation and Stochastic Prediction
Mohammad Kachuee
Kimmo Karkkainen
Orpaz Goldstein
Sajad Darabi
Majid Sarrafzadeh
82
24
0
22 May 2019
1