ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.07770
6
65

PC-GAIN: Pseudo-label Conditional Generative Adversarial Imputation Networks for Incomplete Data

16 November 2020
Yufeng Wang
Dan Li
Xiang Li
Min Yang
ArXivPDFHTML
Abstract

Datasets with missing values are very common in real world applications. GAIN, a recently proposed deep generative model for missing data imputation, has been proved to outperform many state-of-the-art methods. But GAIN only uses a reconstruction loss in the generator to minimize the imputation error of the non-missing part, ignoring the potential category information which can reflect the relationship between samples. In this paper, we propose a novel unsupervised missing data imputation method named PC-GAIN, which utilizes potential category information to further enhance the imputation power. Specifically, we first propose a pre-training procedure to learn potential category information contained in a subset of low-missing-rate data. Then an auxiliary classifier is determined using the synthetic pseudo-labels. Further, this classifier is incorporated into the generative adversarial framework to help the generator to yield higher quality imputation results. The proposed method can improve the imputation quality of GAIN significantly. Experimental results on various benchmark datasets show that our method is also superior to other baseline approaches. Our code is available at \url{https://github.com/WYu-Feng/pc-gain}.

View on arXiv
Comments on this paper