Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.04918
Cited By
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
12 November 2018
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers"
50 / 498 papers shown
Title
Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension
Yuandong Tian
MLT
22
8
0
30 Sep 2019
A Constructive Prediction of the Generalization Error Across Scales
Jonathan S. Rosenfeld
Amir Rosenfeld
Yonatan Belinkov
Nir Shavit
36
205
0
27 Sep 2019
Polylogarithmic width suffices for gradient descent to achieve arbitrarily small test error with shallow ReLU networks
Ziwei Ji
Matus Telgarsky
27
177
0
26 Sep 2019
Mildly Overparametrized Neural Nets can Memorize Training Data Efficiently
Rong Ge
Runzhe Wang
Haoyu Zhao
TDI
18
20
0
26 Sep 2019
Wider Networks Learn Better Features
D. Gilboa
Guy Gur-Ari
13
7
0
25 Sep 2019
Dynamics of Deep Neural Networks and Neural Tangent Hierarchy
Jiaoyang Huang
H. Yau
22
146
0
18 Sep 2019
Auxiliary Learning for Deep Multi-task Learning
Yifan Liu
Bohan Zhuang
Chunhua Shen
Hao Chen
Wei Yin
MoE
30
10
0
05 Sep 2019
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence
Lingxiao Wang
Qi Cai
Zhuoran Yang
Zhaoran Wang
16
236
0
29 Aug 2019
Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective
Guan-Horng Liu
Evangelos A. Theodorou
AI4CE
19
71
0
28 Aug 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
31
161
0
25 Aug 2019
Effect of Activation Functions on the Training of Overparametrized Neural Nets
A. Panigrahi
Abhishek Shetty
Navin Goyal
16
20
0
16 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
60
626
0
14 Aug 2019
Visualizing the PHATE of Neural Networks
Scott A. Gigante
Adam S. Charles
Smita Krishnaswamy
Gal Mishne
36
37
0
07 Aug 2019
Fast generalization error bound of deep learning without scale invariance of activation functions
Y. Terada
Ryoma Hirose
MLT
11
6
0
25 Jul 2019
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
30
110
0
24 Jul 2019
Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks
Yuanzhi Li
Colin Wei
Tengyu Ma
6
291
0
10 Jul 2019
Non-Structured DNN Weight Pruning -- Is It Beneficial in Any Platform?
Xiaolong Ma
Sheng Lin
Shaokai Ye
Zhezhi He
Linfeng Zhang
...
Deliang Fan
Xuehai Qian
X. Lin
Kaisheng Ma
Yanzhi Wang
MQ
27
92
0
03 Jul 2019
On Symmetry and Initialization for Neural Networks
Ido Nachum
Amir Yehudayoff
MLT
28
5
0
01 Jul 2019
Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models
Rares-Darius Buhai
Yoni Halpern
Yoon Kim
Andrej Risteski
David Sontag
BDL
14
5
0
28 Jun 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
30
108
0
25 Jun 2019
ID3 Learns Juntas for Smoothed Product Distributions
Alon Brutzkus
Amit Daniely
Eran Malach
20
20
0
20 Jun 2019
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup
Sebastian Goldt
Madhu S. Advani
Andrew M. Saxe
Florent Krzakala
Lenka Zdeborová
MLT
27
140
0
18 Jun 2019
Approximation power of random neural networks
Bolton Bailey
Ziwei Ji
Matus Telgarsky
Ruicheng Xian
18
6
0
18 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
30
353
0
13 Jun 2019
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian
Samet Oymak
Zalan Fabian
Mingchen Li
Mahdi Soltanolkotabi
MLT
21
88
0
12 Jun 2019
Learning Curves for Deep Neural Networks: A Gaussian Field Theory Perspective
Omry Cohen
Orit Malka
Zohar Ringel
AI4CE
21
21
0
12 Jun 2019
Decoupling Gating from Linearity
Jonathan Fiat
Eran Malach
Shai Shalev-Shwartz
17
28
0
12 Jun 2019
Semi-flat minima and saddle points by embedding neural networks to overparameterization
Kenji Fukumizu
Shoichiro Yamaguchi
Yoh-ichi Mototake
Mirai Tanaka
3DPC
19
23
0
12 Jun 2019
An Improved Analysis of Training Over-parameterized Deep Neural Networks
Difan Zou
Quanquan Gu
21
230
0
11 Jun 2019
The Generalization-Stability Tradeoff In Neural Network Pruning
Brian Bartoldson
Ari S. Morcos
Adrian Barbu
G. Erlebacher
24
72
0
09 Jun 2019
Quadratic Suffices for Over-parametrization via Matrix Chernoff Bound
Zhao Song
Xin Yang
15
91
0
09 Jun 2019
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers
Ari S. Morcos
Haonan Yu
Michela Paganini
Yuandong Tian
16
228
0
06 Jun 2019
Playing the lottery with rewards and multiple languages: lottery tickets in RL and NLP
Haonan Yu
Sergey Edunov
Yuandong Tian
Ari S. Morcos
24
148
0
06 Jun 2019
Towards Task and Architecture-Independent Generalization Gap Predictors
Scott Yak
J. Gonzalvo
Hanna Mazzawi
UQCV
AI4CE
4
27
0
04 Jun 2019
What Can Neural Networks Reason About?
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAI
AI4CE
27
240
0
30 May 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
17
383
0
30 May 2019
On the Generalization Gap in Reparameterizable Reinforcement Learning
Huan Wang
Stephan Zheng
Caiming Xiong
R. Socher
9
39
0
29 May 2019
Norm-based generalisation bounds for multi-class convolutional neural networks
Antoine Ledent
Waleed Mustafa
Yunwen Lei
Marius Kloft
18
5
0
29 May 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
28
252
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Implicit Rugosity Regularization via Data Augmentation
Daniel LeJeune
Randall Balestriero
Hamid Javadi
Richard G. Baraniuk
12
4
0
28 May 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
14
236
0
28 May 2019
Abstraction Mechanisms Predict Generalization in Deep Neural Networks
Alex Gain
H. Siegelmann
AI4CE
19
6
0
27 May 2019
Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness
Pengzhan Jin
Lu Lu
Yifa Tang
George Karniadakis
11
60
0
27 May 2019
Simple and Effective Regularization Methods for Training on Noisily Labeled Data with Generalization Guarantee
Wei Hu
Zhiyuan Li
Dingli Yu
NoLa
22
12
0
27 May 2019
Temporal-difference learning with nonlinear function approximation: lazy training and mean field regimes
Andrea Agazzi
Jianfeng Lu
19
8
0
27 May 2019
On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective
Lili Su
Pengkun Yang
MLT
27
53
0
26 May 2019
Empirical Risk Minimization in the Interpolating Regime with Application to Neural Network Learning
Nicole Mücke
Ingo Steinwart
AI4CE
16
2
0
25 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
24
183
0
24 May 2019
Neural Temporal-Difference and Q-Learning Provably Converge to Global Optima
Qi Cai
Zhuoran Yang
Jason D. Lee
Zhaoran Wang
34
29
0
24 May 2019
Previous
1
2
3
...
10
8
9
Next